-
-
公开(公告)号:CN115330997A
公开(公告)日:2022-11-11
申请号:CN202210742355.2
申请日:2022-06-27
Applicant: 武汉工程大学 , 武汉引行科技有限公司
IPC: G06V10/25 , G06N3/04 , G06N3/08 , G06V10/774 , G06V10/82
Abstract: 本发明提供一种基于YOLOv4神经网络的控制箱装配缺陷检测方法、装置及存储介质,包括如下步骤:构建多个类别零部件的样本训练集和样本测试集,基于YOLOv4神经网络构建初始卷积神经网络检测模型,并通过样本训练集进行训练,通过样本测试集测试卷积神经网络检测模型;对正确装配控制箱内多个类别零部件进行图像拍摄,并从零部件图像得到标准参数;对待检测控制箱内多个类别零部件进行图像拍摄,得到待检测零部件图像;将待检测零部件图像输入最终的卷积神经网络检测模型,输出待检测零部件图像的检测参数,通过标准参数校验检测参数,得到待检测控制箱是否存在装配缺陷的检测结果。本发明能够在复杂环境下快速、高效地完成控制箱装配缺陷检测任务。
-
公开(公告)号:CN115239643A
公开(公告)日:2022-10-25
申请号:CN202210781655.1
申请日:2022-07-04
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明提供一种基于G‑YOLO神经网络的工业零件检测方法、装置及存储介质,通过拍摄设备对工业零件进行拍摄,并制作工业零件初始数据集,构建样本训练集和样本测试集,基于G‑YOLO神经网络构建初始G‑YOLO工业零件检测模型,并通过预处理后的样本训练集和样本测试集分别对初始G‑YOLO工业零件检测模型进行模型训练和性能测试,得到G‑YOLO工业零件检测模型,G‑YOLO工业零件检测模型泛化能力强,可以满足多种工业零件的检测,解决了现有方法对于工业零件在复杂环境下检测速度慢的问题,极大提高检测速度,满足工业环境下的零件实时检测需求。
-
公开(公告)号:CN114863937A
公开(公告)日:2022-08-05
申请号:CN202210536031.3
申请日:2022-05-17
Applicant: 武汉工程大学
Abstract: 本发明提供了基于深度迁移学习与XGBoost的混合鸟鸣识别方法,通过计算log‑Mel频谱图的一阶差分系数和二阶差分系数,反映鸟鸣信号的变化过程,在保留物种有效信息的同时减少环境噪声等无关因素的影响,提升了识别鸟类物种的准确率;减少了环境背景噪声等无关因素的影响,有效识别了自然场景下的多种鸟类物种。本发明采用深度迁移学习微调VGG16模型构建特征提取器,提升了少样本训练数据下深度卷积神经网络的泛化能力,减少了参数训练,提升了运行效率。本发明将鸟鸣信号更准确的映射为鸟类物种,对自然环境中多种鸟类鸣声均具有良好的识别性能。
-
公开(公告)号:CN112950478B
公开(公告)日:2022-07-19
申请号:CN202110291613.5
申请日:2021-03-18
Applicant: 武汉工程大学
IPC: G06T3/40
Abstract: 本发明公开了一种基于双重身份属性约束的人脸超分辨率方法及系统,该方法包括:S1、获取对应的低分辨率人脸图像LR和高分辨率人脸图像HR;S2、将LR输入第一生成器得到高分辨率空间的人脸图像SR,将SR输入第二生成器得到低分辨率空间的人脸图像LR′;S3、将HR输入第二生成器得到低分辨率空间的人脸图像LR″,将LR″输入第一生成器得到高分辨率空间的人脸图像SR′;S4、LR和LR′进行前向闭环约束,HR和SR′进行反向闭环约束;S5、SR和SR′进行前向身份约束,LR″和LR′进行反向身份约束。本发明提出了具有双重身份属性的双闭环网络能够超分辨低分辨率面部图像到相应的高分辨率部分同时保留身份信息,能够有效提升人脸图像的超分辨率重建性能。
-
公开(公告)号:CN114751264A
公开(公告)日:2022-07-15
申请号:CN202210437412.6
申请日:2022-04-25
Applicant: 武汉工程大学
Abstract: 本发明公开了一种用于消毒通风的工业大风扇,包括主体、电源线,电源线上设置有收纳筒,收纳筒包括固定装置、收纳辊、固定杆,电源线从固定装置的位置穿过收纳筒且电源线缠绕连接至固定杆上;固定杆贯穿收纳辊且收纳辊固接于收纳筒内部,固定杆的两端与收纳筒的内腔转动连接,收纳辊内的固定杆上设置有扭簧,扭簧的一端与固定杆固接,扭簧的另一端与收纳辊的内腔固接;使得电源线被拉出收纳筒时,扭簧对电源线的回复拉力能够被固定装置抵消。本发明在电源线上设置收纳结构,在条件允许范围内可自由调节电源线的长度,便于收纳、伸缩。
-
公开(公告)号:CN110580680B
公开(公告)日:2022-07-05
申请号:CN201910849721.2
申请日:2019-09-09
Applicant: 武汉工程大学 , 武汉烽火技术服务有限公司
IPC: G06T3/40
Abstract: 本发明公开了一种基于组合学习的人脸超分辨率方法及装置,属于人脸图像超分辨率领域,该方法包括:对下采样得到的低分辨率人脸图像进行组件分割;将低分辨率人脸图像和分割后的人脸组件图像块进行分块操作,分出相互重叠的图像块;将图像块输入各组件生成对抗网络产生高分辨率组件图像块,由上采样后的低分辨率人脸背景图像生成高分辨率人脸背景图像;通过融合网络提取高分辨率图像块特征及人脸背景图像组件特征;将两种特征进行融合后,重建得到目标人脸组件图像块;通过人脸组件在人脸图像中的坐标点,将目标人脸组件图像块对应合并至高分辨率人脸背景图像中,形成高分辨率人脸图像。本发明可以提高网络的重建性能,产生更高质量的人脸图像。
-
公开(公告)号:CN114648457A
公开(公告)日:2022-06-21
申请号:CN202210272822.X
申请日:2022-03-18
Applicant: 中铁大桥局集团有限公司 , 中铁大桥科学研究院有限公司 , 武汉工程大学
Abstract: 本发明提供一种图像增强方法、装置、设备及可读存储介质,图像增强方法包括:对每张低光照图像分别进行光照增强处理;以每张低光照图像和其对应的初步光照增强图像以及正常光照图像作为一个训练图像对;使用多个训练图像对交替训练增强生成器网络、降质生成器网络、增强判别器网络和降质判别器网络,得到训练好的增强生成器网络。通过本发明,将低光照图像进行初步光照增强,在增强生成器网络的基础上增加了降质生成器网络,将正常光照图像进行反向的降质学习训练,由于判别器和生成器之间的互斥,使得增强的图像和降质的图像都与对应的真实光照图像越来越相似,通过本发明,可以生成更高质量的正常光照图像。
-
公开(公告)号:CN114612755A
公开(公告)日:2022-06-10
申请号:CN202210162383.7
申请日:2022-02-22
Applicant: 武汉工程大学
IPC: G06V10/80 , G06V10/52 , G06V10/25 , G06V10/54 , G06V10/56 , G06V10/764 , G06V10/766 , G06V10/82 , G06K9/62 , G06N3/04
Abstract: 本申请涉及一种火灾检测方法、系统、电子设备和可读存储介质,属于计算机视觉技术领域。该方法包括获取待检测图像;对所述待检测图像进行特征提取,得到多个不同尺度的深层特征图;根据多个所述深层特征图,确定所述待检测图像的类别和火灾事故在所述待检测图像中的位置,所述类别包括存在火灾事故或不存在火灾事故。本申请可以高效率地检测出待检测图像中是否有火灾,以及火灾的位置信息,和人工监测火灾相比,本申请的准确性高、及时性强、人力成本更少,利用待检测图像的深层特征图进行评判,更够更好地利用待检测图像所包含的信息,使得检测过程更加智能化。
-
公开(公告)号:CN111814595B
公开(公告)日:2022-05-10
申请号:CN202010568470.3
申请日:2020-06-19
Applicant: 武汉工程大学
Abstract: 本发明公开了一种基于多任务学习的低光照行人检测方法及系统,包括获取正常、低光照行人数据集;构建光照增强网络,并利用正常、低光照行人数据集进行预训练;构建行人检测网络,利用正常光照行人数据集进行预训练;基于多任务学习,设计一个能够融合不同任务之间特征的多任务学习模块,对两个网络进行特征共享,构建多任务特征共享的低光照行人检测网络;将两个预训练模型导入到该低光照行人检测网络,并利用正常、低光照行人数据集进行训练,得到多任务特征共享的低光照行人检测模型;利用多任务特征共享的低光照行人检测模型对被检测图像进行检测,得到图像中行人的位置。本发明能够准确、高效的在低光照的图像中检测出行人的位置。
-
-
-
-
-
-
-
-
-