一种带周转型抽吸孔的航空发动机压气机叶片

    公开(公告)号:CN112324707B

    公开(公告)日:2022-05-03

    申请号:CN202011173654.6

    申请日:2020-10-28

    Abstract: 本发明公开了一种带周转型抽吸孔的航空发动机压气机叶片,包括:吸力面、压力面、叶顶、叶根、主流孔和周转型抽吸孔;在压气机叶片的最大挠度处开设主流孔,主流孔的径向范围是从压气机叶片的叶根到叶顶;周转型抽吸孔均匀分布在主流孔沿着流动方向的一侧,与主流孔相连通;周转型抽吸孔沿着流动方向延伸预设长度,在预设长度后以预设周转角度回转,延伸到与吸力面相交。既能达到抽除流动分离时的低能流体的效果,又可以尽可能小地对压气机叶片的强度产生影响。

    一种带树状抽吸结构的航空发动机压气机叶片

    公开(公告)号:CN112324708B

    公开(公告)日:2022-04-19

    申请号:CN202011176067.2

    申请日:2020-10-28

    Abstract: 本发明公开了一种带树状抽吸结构的航空发动机压气机叶片,包括:压力面、吸力面、叶顶、叶根、主流孔、支流孔和微型孔;微型孔与支流孔相连通,支流孔与主流孔相连通,主流孔、支流孔和微型孔不在同一平面内,构成树形结构;在压气机叶片的最大挠度处开设主流孔,主流孔的径向范围是从压气机叶片的叶根到叶顶;支流孔分布在主流孔两侧,支流孔轴向方向为平行分布,与主流孔的轴线存在夹角;微型孔分布在支流孔两侧,微型孔轴线方向与支流孔轴向方向存在夹角,微型孔出口在压气机叶片的吸力面上。该设计既能达到抽除流动分离时低能流体的效果,又可以尽可能小地对压气机叶片的强度产生影响。

    一种超音速涡轮叶片的发散冷却气膜孔分布结构

    公开(公告)号:CN112780355A

    公开(公告)日:2021-05-11

    申请号:CN202110222693.9

    申请日:2021-02-25

    Abstract: 本发明公开了一种超音速涡轮叶片的发散冷却气膜孔分布结构,属于飞行器动力系统主动冷却方式技术领域。本发明解决了现有发散冷却在受到高温热冲击时,发散冷却层由于受到高温热应力极易容易变形和烧蚀的问题。本发明的发散冷却气膜孔在发散冷却层上的分布包括密集区域和阵列结构区域,密集区域位于发散冷却层的一端,阵列结构区域按周期性锯齿形、周期性棱形、周期性波纹形、周期性矩形或周期性四边形的形式排列。本发明提供的发散冷却气膜孔分布结构使肋板之间形成相互支撑,避免肋板出现应力集中现象,减少其变形,保证了微米级气膜孔的原始形状,减少气膜孔的堵塞,在保证气膜冷却效率的前提下,有效隔绝热流冲击作用,减少热端部件的烧蚀。

    涡轮叶片
    114.
    发明公开

    公开(公告)号:CN112576316A

    公开(公告)日:2021-03-30

    申请号:CN202011279344.2

    申请日:2020-11-16

    Abstract: 本发明公开了一种涡轮叶片,所述涡轮叶片包括:叶片主体、顶板和多个连接件,叶片主体内具有第一腔,叶片主体包括压力侧壁和吸力侧壁,顶板包括彼此相连的第一板和第二板,顶板的至少部分设在第一腔内,顶板和叶片主体之间间隔开以形成通道,通道包括第一通道段和第二通道段,第一通道段形成在第一板和压力侧壁之间,第二通道段形成在第二板和吸力侧壁之间,一部分连接件设在第一通道段内以将第一通道段分成多个第一子通道,另一部分连接件设在第二通道段内以将第二通道段分成多个第二子通道。本发明实施例的涡轮叶片可以提高对流冷却效果,减少了涡轮叶片顶部的间隙泄露流对叶片本体的伤害。

    涡轮叶片
    115.
    发明公开

    公开(公告)号:CN112282855A

    公开(公告)日:2021-01-29

    申请号:CN202011033794.3

    申请日:2020-09-27

    Abstract: 本发明实施例公开了一种涡轮叶片,所述涡轮叶片包括叶片主体和顶板,叶片主体内具有第一腔,叶片本体包括压力侧壁和吸力侧壁,压力侧壁和吸力侧壁均为弧形,顶板包括彼此相连的第一板和第二板,第一板具有在其厚度方向上相对布置的第一侧面和第二侧面,第二板具有在其厚度方向上相对布置的第三侧面和第四侧面,第一侧面和第三侧面相交且成夹角,第二侧面和第四侧面相交且成夹角,顶板设在第一腔内,且第一板和压力侧壁之间间隔开以形成第一通道,第二板和吸力侧壁之间间隔开以形成第二通道,第一通道和第二通道均与第一腔连通。本发明实施例的涡轮叶片可以提高对流冷却效果,减少了涡轮叶片顶部的间隙泄露流对叶片本体的伤害。

    燃气轮机发动机的涡轮叶片及其控制方法

    公开(公告)号:CN112160796A

    公开(公告)日:2021-01-01

    申请号:CN202010918079.1

    申请日:2020-09-03

    Abstract: 本申请公开了一种燃气轮机发动机的涡轮叶片及其控制方法,其中,燃气轮机发动机的涡轮叶片,包括:榫头;和叶身,叶身具有包含内腔的内部冷却系统,内腔中设置有冲击套筒,以使冲击套筒与叶身内壁之间形成近壁冷却通道,冲击套筒上设有和近壁冷却通道相通的多个冲击射流孔,冲击套筒的上下两侧分别与叶身的顶端、端壁相连,且冲击套筒外壁与叶身内壁通过绕流板相连,扰流板的内部具有供冷却流体流经的狭缝。由此,利用带狭缝气膜喷射的外部冷却技术结合内部冲击冷却和带狭缝扰流板强化对流换热冷却技术,可提升气冷涡轮叶片整体换热效果,使叶片保持在较低的温度水平,保证叶片结构强度,提高叶片的使用寿命。

    涡轮机及涡轮机叶顶间隙密封结构

    公开(公告)号:CN111691927A

    公开(公告)日:2020-09-22

    申请号:CN202010439429.6

    申请日:2020-05-22

    Abstract: 本发明公开了一种涡轮机及涡轮机叶顶间隙密封结构,涡轮机包括机匣和动叶,动叶具有叶顶,叶顶上设有叶冠,涡轮机叶顶间隙密封结构包括:多个第一篦齿,多个第一篦齿彼此间隔开且设于叶冠的朝向机匣内壁的第一壁面上;多个第二篦齿,多个第二篦齿彼此间隔开且设于机匣的内壁上,其中多个第一篦齿和多个第二篦齿相对且交错布置。根据本发明实施例的涡轮机叶顶间隙密封结构,通过在叶冠上布置双侧篦齿封严机构最大化减少叶冠内的泄漏流体,通过适当的齿距、齿厚调节泄漏流在叶冠内的流动状态,减低泄漏流体在叶冠内的流动损失和流出叶冠后与主流流体的掺混损失,提高涡轮级的气动性能。

    端壁静压测量实验装置
    118.
    发明公开

    公开(公告)号:CN106525383A

    公开(公告)日:2017-03-22

    申请号:CN201610986832.4

    申请日:2016-11-09

    CPC classification number: G01M9/06

    Abstract: 本发明涉及空气动力学实验技术领域,尤其是涉及一种端壁静压测量实验装置,包括上端板、动端板和静端板;动端板设于静端板的上表面,且动端板能够沿静端板的长度方向移动;动端板上设有静压孔列,静压孔列包括多个静压孔;上端板位于动端板的上方;上端板的下表面固定有多个叶片,且叶片的下侧与动端板的上表面设置有间隙。本发明大大减少了工作量和测量时间,并且可以对流场情况能够较精确的显示。

    一种高负荷轴流压气机静叶栅流动分离控制方法

    公开(公告)号:CN103410779B

    公开(公告)日:2015-08-19

    申请号:CN201310389714.1

    申请日:2013-08-30

    Abstract: 一种高负荷轴流压气机静叶栅流动分离控制方法,它涉及一种轴流压气机静叶栅流动分离控制方法,以解决在高负荷压气机中,由于负荷增加造成的附面层分离,开抽吸槽数量过多造成的抽吸管道布局困难、叶片强度下降的问题。正弯叶片控制方法:通过正弯叶片上的第一抽吸槽将吸力面中部低能流体吸出。反弯叶片控制方法:通过反弯叶片上的上抽吸槽和下抽吸槽聚集在上端壁和下端壁的低能流体吸出。根部正弯顶部反弯叶片控制方法:通过根部正弯顶部反弯叶片上的第二抽吸槽将聚集在上端壁的低能流体吸出。根部反弯顶部正弯叶片控制方法:通过根部反弯顶部正弯叶片上的第三抽吸槽将聚集在下端壁的低能流体吸出。本发明用于高负荷压气机。

    一种亚音速吸附式轴流压气机气动设计方法

    公开(公告)号:CN103244459B

    公开(公告)日:2015-08-05

    申请号:CN201310148289.7

    申请日:2013-04-25

    Inventor: 王松涛 胡应交

    Abstract: 一种亚音速吸附式轴流压气机气动设计方法,属于轴流压气机技术领域。本发明针对亚音速轴流压气机级叶片转角增加、级负荷提升时动叶中的附面层分离流动问题,同时避免在动叶中进行附面层抽吸所造成的如抽吸管路布局困难、叶片强度下降等问题。在入口速度三角形不变的前提下,随着其设计级负荷系数不断提升并超过常规设计值时,大幅增加动叶出口轴向速度以降低动叶中的扩压因子,以确保动叶高效流动;利用附面层抽吸以解决下游静叶内部流动问题。本发明相较在动、静叶中都进行附面层抽吸而言,有效避免了转动部件叶片强度与抽吸结构设计等难题;相较采用串列叶栅技术而言,可减少叶片数从而降低发动机尺寸与重量。该方法可用于高推重比航空发动机气动设计。

Patent Agency Ranking