一种基于深度强化学习的车辆队列控制方法及系统

    公开(公告)号:CN117008621A

    公开(公告)日:2023-11-07

    申请号:CN202311084199.6

    申请日:2023-08-25

    Applicant: 长安大学

    Abstract: 本发明公开了一种基于深度强化学习的车辆队列控制方法及系统,根据车辆的动力学模型构建车辆队列运行的运动仿真模型;基于车辆队列运行的运动仿真模型和车辆运行状态,使用恒定时间间距策略,获取车辆队列控制的状态空间和动作空间;基于车辆队列控制的状态空间和动作空间建立DDPG网络,并利用奖励函数机制对DDPG网络进行训练,直至训练过程中每个回合获得的总奖励不再增加时停止训练,得到训练好的控制策略网络,利用训练好的控制策略网络进行队列控制;本发明考虑多种因素实现队列的控制,并且该队列控制方法的控制策略训练完成后,不需要在执行过程中进行复杂计算,控制效率非常高,并且可以当前场景的不同状况下保持控制效果,不需要更换参数。

    一种基于树搜索的高速公路混合交通流合流序列优化方法

    公开(公告)号:CN118247989B

    公开(公告)日:2025-01-14

    申请号:CN202410230885.8

    申请日:2024-02-29

    Applicant: 长安大学

    Abstract: 本发明涉及智能交通领域,尤其涉及一种基于树搜索的高速公路混合交通流合流序列优化方法,包括以下步骤:S1,构建双车道主干道和单车道匝道的交通场景,并记录当前的队列块合流序列;S2,当有新的队列块进入控制区时,利用树搜索获取包含当前队列块的最优合流序列;S3,基于搜索得到的最优合流序列,利用庞特里亚金原理求解队列块内车辆的最优行驶轨迹;S4,队列块中头车按照最优行驶轨迹行驶,其余人驾车按照跟驰模型进行行驶,实现合流。本发明依靠车联网技术实时获取高速公路控制区内主干道和匝道内车辆队列块的状态信息,利用CAV的可控性,通过搜索最优合流序列以及对CAV进行速度控制和换道控制,来完成引导队列块内HDV进行安全高效的合流。

    一种弱GNSS环境下车辆定位方法和系统

    公开(公告)号:CN118310514A

    公开(公告)日:2024-07-09

    申请号:CN202410409727.9

    申请日:2024-04-07

    Applicant: 长安大学

    Abstract: 本发明提供了一种弱GNSS环境下车辆定位方法和系统,该方法包括:对自动驾驶车辆的系统运行数据信息进行预处理,其中系统运行数据信息包括从GNSS系统获取的经纬度数据和从INS系统获取的三轴加速度、三轴角速度及航向信息;将预处理后的从INS系统获取系统运行数据信息训练位置预测网络,最终输出预测网络的监督信息;根据步骤S2中的监督信息以及预处理后系统运行数据信息和位置修正网络的监督信息训练位置修正网络;最终输出预测值进行修正;在弱GNSS环境或GNSS中断情况下,通过位置预测网络和位置修正网络,输出最终预测值。以解决如何在不增加额外传感器的前提下,仅利用GNSS/INS组合导航系统的数据,提升GNSS/INS组合导航系统在弱GNSS条件下的车辆定位性能的问题。

    一种车辆位置重识别方法及系统
    6.
    发明公开

    公开(公告)号:CN117518121A

    公开(公告)日:2024-02-06

    申请号:CN202311437884.2

    申请日:2023-10-31

    Applicant: 长安大学

    Abstract: 本发明公开了一种车辆位置重识别方法及系统,通过对车辆的激光雷达数据进行预处理获取车辆激光雷达的点云结果;利用获取的点云结果进行环境描述符构建;根据获取车辆的激光雷达数据的激光雷达传感器的种类和测量环境计算动态过滤策略阈值;根据构建的环境描述符以及得到的动态过滤策略阈值,与历史数据库中点云数据进行比对,获取车辆的位置信息,本发明能够提高位置重识别的准确率和效率,本发明考虑不同激光雷达的角分辨率和测量范围,提出了动态阈值过滤策略,提高了本方法对多种型号传感器的泛化能力,本发明分离激光雷达测量的地面点与非地面点,融合地面点高度信息和非地面点强度信息构建描述符,提高了描述符对环境的表达能力。

    一种无人车泊车能力的测试系统及测试方法

    公开(公告)号:CN111880511B

    公开(公告)日:2023-04-07

    申请号:CN202010635444.8

    申请日:2020-07-03

    Applicant: 长安大学

    Abstract: 一种无人车泊车能力的测试系统及测试方法,该系统包括测试场地、第一参考车辆、路侧单元、控制中心以及待测车辆;所述测试场地包括:通行车道;第一停车位,设置在通行车道旁;多个参考停车位,所述第一停车位于多个参考停车位中的两个参考停车位之间,两个参考停车位内均放置有第一参考车辆;所述路侧单元用于分别与所述控制中心和待测车辆进行信号传输,以及用于获取待测车辆的行驶信息,并将获取到的待测车辆的行驶信息发送至所述控制中心;所述控制中心用于基于输入指令生成停车位信息和启动指令,并通过路侧单元向待测车辆发送停车位信息以及启动指令。上述测试系统及方法可以模拟真实场地,对无人车泊车能力进行测试。

    一种智能网联汽车协同定位方法及系统

    公开(公告)号:CN115373008A

    公开(公告)日:2022-11-22

    申请号:CN202211064469.2

    申请日:2022-08-31

    Applicant: 长安大学

    Abstract: 本发明公开了一种智能网联汽车协同定位方法及系统,通过车辆对其自身的位置信息进行修正后广播至其他协同车辆,然后对车辆广播的修正后的自身的位置信息进行通信时延误差补偿,根据通信时延误差补偿后车辆的位置信息,对车辆与其他协同车辆的相对位置进行预测,本发明利用分布式协同定位技术,通过加权平均融合多车多元信息,使得集群内各车辆都能得到较好的状态估计,考虑通信时延对协同定位方法的影响,并依据历史信息使用预测方法对时延带来的误差进行补偿,有效减轻恶劣通信环境下时延的负面影响,本发明考虑相对测距对协同定位的影响,构建了车间相对测距模型,利用神经网络预测车间相对位置,提高相对测距精度。

Patent Agency Ranking