Abstract:
An alternating stack of insulating layers and sacrificial material layers are formed over a substrate. Memory stack structures are formed through the alternating stack. A backside trench is formed and the sacrificial material layers are replaced with electrically conductive layers. After formation of an insulating spacer in the trench, an epitaxial pedestal structure is grown from a semiconductor portion underlying the backside trench. A source region is formed by introducing dopants into the epitaxial pedestal structure and an underlying semiconductor portion during and/or after epitaxial growth. Alternatively, the backside trench can be formed concurrently with formation of memory openings. An epitaxial pedestal structure can be formed concurrently with formation of epitaxial channel portions at the bottom of each memory opening. After formation and subsequent removal of a dummy trench fill structure in the backside trench, a source region is formed by introducing dopants into the epitaxial pedestal structure.
Abstract:
Corner rounding of electrically conductive layers in a replacement electrode integration scheme can be alleviated by employing compositionally modulated sacrificial material layers. An alternating stack of insulating layers and compositionally modulated sacrificial material layers can be formed over a substrate. Each of the compositionally modulated sacrificial material layers has a vertical modulation of material composition such that each compositionally modulated sacrificial material layer provides greater resistance to conversion into a silicon-oxide-containing material at upper and lower portions thereof than at a middle portion thereof during a subsequent oxidation process. Bird's beak features can be formed with lesser dimensions, and electrically conductive layers formed by replacement of remaining portions of the sacrificial material layers with a conductive material can have less corner rounding. Reduction in corner rounding can increase effectiveness of the control gates for a three-dimensional memory device.
Abstract:
An alternating stack of insulating layers and sacrificial material layers is formed over a substrate. After formation of a memory opening, all surfaces of the memory opening are provided as silicon oxide surfaces by formation of at least one silicon oxide portion. A silicon nitride layer is formed in the memory opening. After formation of a memory stack structure, backside recesses can be formed employing the silicon oxide portions as an etch stop. The silicon oxide portions can be subsequently removed employing the silicon nitride layer as an etch stop. Physically exposed portions of the silicon nitride layer can be removed selective to the memory stack structure. Damage to the outer layer of the memory stack structure can be minimized or eliminated by successive use of etch stop structures. Electrically conductive layers can be subsequently formed in the backside recesses.
Abstract:
A tunneling dielectric layer for a vertical memory device is formed with a stack that provides a barrier height profile for high data retention tolerance. Memory stack structures extend through a stack of insulating layers and electrically conductive layers. Each memory stack structure comprises, from outside to inside, a blocking dielectric, memory elements, a tunneling dielectric layer, and a vertical semiconductor channel. The tunneling dielectric layer comprises, from outside to inside, an outer silicon oxide layer, a first silicon oxynitride layer having a first atomic nitrogen concentration, a second silicon oxynitride layer having a second atomic nitrogen concentration that is less than the first atomic nitrogen concentration, and an inner silicon oxide layer that contacts a vertical semiconductor channel. The reduced band gap of the first silicon oxynitride layer relative to the second silicon oxynitride layer provides additional energy barrier for relaxation of holes stored in the memory elements.
Abstract:
A p-i-n junction structure is formed within a memory film laterally surrounded by an alternating plurality of electrically insulating layers and electrically conductive layers to provide a three-dimensional memory structure. The p-i-n junction includes a lower junction between an intrinsic semiconductor channel portion and a lower doped semiconductor portion and an upper junction between the intrinsic semiconductor channel portion and an upper doped semiconductor portion. The memory film can be subsequently formed on a sidewall of the memory opening, and the intrinsic semiconductor channel portion can be deposited on the memory opening and the lower doped semiconductor portion. The upper doped semiconductor portion can be formed above a topmost electrically conductive layer. The lower doped semiconductor portion can provide hole charge carriers for electrical current.
Abstract:
An alternating stack of insulating layers and sacrificial material layers is formed over a substrate. After formation of a memory opening, all surfaces of the memory opening are provided as silicon oxide surfaces by formation of at least one silicon oxide portion. A silicon nitride layer is formed in the memory opening. After formation of a memory stack structure, backside recesses can be formed employing the silicon oxide portions as an etch stop. The silicon oxide portions can be subsequently removed employing the silicon nitride layer as an etch stop. Physically exposed portions of the silicon nitride layer can be removed selective to the memory stack structure. Damage to the outer layer of the memory stack structure can be minimized or eliminated by successive use of etch stop structures. Electrically conductive layers can be subsequently formed in the backside recesses.
Abstract:
The threshold voltage for vertical transistors in three-dimensional memory stack structures can be made independent of a lateral distance from a source region by forming a doped pocket region. The doped pocket region has the same conductivity type as a doped well that constitutes horizontal portions of the semiconductor channels that extend into the memory stack structures, and has a higher dopant concentration level than the doped well. The doped pocket region and a source region can be simultaneously formed by implanting p-type dopants and n-type dopants into a surface portion of the substrate underlying a backside contact trench. By selecting dopant species having different diffusion rates, the doped pocket region can surround the source region. The process parameters of the anneal process can be selected such that the interface between the dopant pocket region and the doped well underlies outermost memory stack structures.