一种容积调速式电液转向系统双目标超螺旋滑模控制方法

    公开(公告)号:CN118457703A

    公开(公告)日:2024-08-09

    申请号:CN202410601131.9

    申请日:2024-05-15

    Applicant: 福州大学

    Abstract: 本发明提出了一种容积调速式电液转向系统双目标超螺旋滑模控制方法,包括:考虑非线性和未知干扰建立动力学模型,通过输入输出线性化转化为状态空间模型;设计双饱和函数下的超螺旋滑模控制系统转角和回油口压力双目标控制器;构建模型多变量主项占比自调节因子,采用粒子群算法对控制参数进行优化,以此完成对搜寻最优控制增益,并进一步削弱由系统状态方程存在高阶项而易产生强的抖振、增强鲁棒性;根据滑模面函数实际变化幅频值建立抑制滑模抖振程度评价方法,验证控制方法的有效性。本发明面向重型车辆容积调速式电液转向系统在保证较低能耗下实现优良动态性能,提高控制精度,抑制抖振程度,保证快速收敛性,最终实现高性能转角跟踪控制。

    基于流量补偿控制的可调横拉杆闭式泵控转向系统及方法

    公开(公告)号:CN117922679A

    公开(公告)日:2024-04-26

    申请号:CN202410279049.9

    申请日:2024-03-12

    Applicant: 福州大学

    Abstract: 本发明提出一种基于流量补偿控制的可调横拉杆闭式泵控转向系统及方法,该发明包括可调横拉杆闭式泵控转向系统、流量特性测试系统。可调横拉杆闭式泵控转向系统为主系统,根据左、右轮转角误差信号,控制伺服电机泵转速,并采用优化算法获取最优控制增益配比;再根据左、右轮转角信号,计算横拉杆缸位移误差值,调节比例伺服阀阀口开度,控制横拉杆长度以适应不同转向模式;为提高泵输出流量的控制精度,搭建流量特性测试系统作为辅助测试系统,探究泵转速、泵源压力与泵输出流量三者非线性映射关系,并用神经网络算法构建三者映射模型,补偿伺服电机泵输出流量,提高主系统控制性能。所述转向系统实现横拉杆协同可变的同时降低了节流损失。

    一种负载口独立控制式电液伺服转向系统及其控制方法

    公开(公告)号:CN114771649B

    公开(公告)日:2024-01-26

    申请号:CN202210398702.4

    申请日:2022-04-15

    Applicant: 福州大学

    Abstract: 本发明涉及一种负载口独立控制式电液伺服转向系统及控制方法,其主要包括机械转向结构、液压控制和电控系统三部分,系统主要由电机伺服泵、第一比例伺服阀、第二比例伺服阀、角度传感器、压力传感器组成。本发明还包括一种负载口独立控制式电液伺服转向系统控制方法,提供一种泵阀联控策略,由负载口独立阀控技术对转向系统的转角、压力进行复合控制,并设计了积分滑模控制器;通过伺服电机泵对转向系统进行泵源压力闭环控制,采用一种可变泵源压力的控制方法,并设计了积分滑模控制器。本发明实现电液伺服转向系统高精度动态转向和高效节能。

    基于高频动态压力信号测量高速开关阀流量脉动的方法

    公开(公告)号:CN114739470B

    公开(公告)日:2024-06-04

    申请号:CN202210391293.5

    申请日:2022-04-14

    Applicant: 福州大学

    Abstract: 本发明提出基于高频动态压力信号测量高速开关阀流量脉动的方法,首先确定六个高频动态压力信号的测量位置,然后根据管道内径、油液介质的运动粘度、被测高速开关阀的频率、波的剪切数与流体的有效密度和有效粘度系数关系、油液介质的密度、有效体积模量、前三个动态压力传感器分别与驱动液压泵之间的距离、后三个动态压力传感器分别与高速开关阀之间的距离、测得的六个高频动态压力信号以及终端反射系数与压力和管道特征阻抗的关系计算高速开关阀的阻抗,根据高速开关阀两侧相邻的两个高频动态压力信号计算高速开关阀的压力,最终通过高速开关阀的阻抗和压力计算出流量脉动,并将计算内容编入Labview实现实时显示;本发明可实现对流量脉动的实时测量。

    一种负载口独立控制式电液伺服转向系统及其控制方法

    公开(公告)号:CN114771649A

    公开(公告)日:2022-07-22

    申请号:CN202210398702.4

    申请日:2022-04-15

    Applicant: 福州大学

    Abstract: 本发明涉及一种负载口独立控制式电液伺服转向系统及控制方法,其主要包括机械转向结构、液压控制和电控系统三部分,系统主要由电机伺服泵、第一比例伺服阀、第二比例伺服阀、角度传感器、压力传感器组成。本发明还包括一种负载口独立控制式电液伺服转向系统控制方法,提供一种泵阀联控策略,由负载口独立阀控技术对转向系统的转角、压力进行复合控制,并设计了积分滑模控制器;通过伺服电机泵对转向系统进行泵源压力闭环控制,采用一种可变泵源压力的控制方法,并设计了积分滑模控制器。本发明实现电液伺服转向系统高精度动态转向和高效节能。

    一种重型车辆电液伺服转向系统及可抑制超调的控制方法

    公开(公告)号:CN114655306A

    公开(公告)日:2022-06-24

    申请号:CN202210398704.3

    申请日:2022-04-15

    Applicant: 福州大学

    Abstract: 本发明涉及一种重型车辆电液伺服转向系统及可抑制超调的控制方法,包括液压子系统、机械子系统、数据采集子系统及控制器;所述数据采集子系统获取转向轮实际转角及各压力传感器压力;所述控制器根据系统目标转角、转向轮实际转角及各压力传感器压力,计算输出伺服驱动器控制电压从而控制液压子系统。本发明可对系统实现转角闭环控制,且能实现系统高动态跟踪控制的同时降低系统超调。

    一种容积/节流调速模式切换的电液转向系统及控制方法

    公开(公告)号:CN116890909A

    公开(公告)日:2023-10-17

    申请号:CN202310853443.4

    申请日:2023-07-12

    Applicant: 福州大学

    Abstract: 本发明提出一种容积/节流调速模式切换的电液转向系统及控制方法,该系统包括泵控系统、回油口阀控系统、信号采集系统、电子控制系统;该方法采用容积调速/节流调速二模式切换的复合控制策略,在容积调速模式下根据转角的偏差信号对伺服电机进行反馈控制,进而控制系统压力,并根据回油口压力控制伺服比例阀从而达到所设定的背腔压力;在节流调速模式下根据目标转角速度前馈及阀口压差反馈对伺服电机进行控制,并根据转角的偏差信号调节伺服比例阀的阀口开度,进而控制系统流量;本发明可满足电液伺服转向系统的高精度动态转向需求,在动力匹配上做到按需供给、节能降耗,同时还避免了系统容腔产生负压,提高系统整体刚度与稳定性。

    一种基于双阀并联的液压机多缸调平系统自适应控制方法

    公开(公告)号:CN118564508A

    公开(公告)日:2024-08-30

    申请号:CN202410799851.0

    申请日:2024-06-20

    Applicant: 福州大学

    Abstract: 本发明涉及一种基于双阀并联的液压机多缸调平系统自适应控制方法,包括:建立基于双阀并联的液压机多缸调平系统的动力学模型;将四个调平缸对角位移设计为对角调平缸位移误差之和与位移误差之差的位移误差关系,将位移误差关系输入到模型参考自适应控制器中,通过模型参考自适应控制器不断更新控制参数,实现对偏载的估计与纠偏力矩的输出;根据纠偏力矩的输出获得四个调平缸的期望控制电压,将期望控制电压输入至伺服比例阀,此外通过位移与速度变化关系得到双阀并联中流量补偿阀的期望控制电压,通过双阀并联共同控制调平缸,实现四个调平缸鲁棒调平控制。该方法可缓解液压机多余力冲击的干扰并对未知偏载进行估计,从而实现高精度同步控制。

    一种液压机调平系统神经网络自适应超螺旋滑模控制方法

    公开(公告)号:CN118034057A

    公开(公告)日:2024-05-14

    申请号:CN202410289859.2

    申请日:2024-03-14

    Applicant: 福州大学

    Abstract: 本发明涉及一种液压机调平系统神经网络自适应超螺旋滑模控制方法,包括以下步骤:建立考虑活动梁模型的液压机被动式四角调平系统数学模型;基于RBF神经网络原理,实现对系统模型中未知部分的逼近;根据所建立的数学模型,将上述RBF神经网络与滑模控制相结合,设计超螺旋滑模位置闭环,以最高缸位移为虚拟轴,四个调平缸分别跟踪虚拟轴,达到四缸同步控制要求;基于所设计的神经网络超螺旋滑模控制器设计自适应律,在线整定控制器增益;针对所设计的神经网络自适应超螺旋滑模控制器,基于Lyapunov方法,保证整个闭环系统的稳定性和收敛性。本发明可在液压机压制负载过程中存在较大未知干扰以及模型不确定的情况下得到较高的同步控制精度以及良好的鲁棒性。

    一种泵控电液转向系统的变速趋近与扰动补偿控制方法

    公开(公告)号:CN117970803A

    公开(公告)日:2024-05-03

    申请号:CN202410127026.6

    申请日:2024-01-30

    Applicant: 福州大学

    Abstract: 本发明提出一种泵控电液转向系统的变速趋近与扰动补偿控制方法,所述方法以变速趋近Terminal滑模干扰观测器对泵控电液伺服转向系统的集总扰动进行精准估计,并以关联转角误差的自适应不完全补偿方法对系统集总扰动进行前馈补偿,该扰动补偿的系数跟随误差变化而自动调整,兼顾转向精度和转向稳定性;所述方法包括以下步骤;步骤S1,建立泵控电液转向系统的数学模型;步骤S2,设计变速滑模趋近律;步骤S3,设计变速趋近Terminal滑模干扰观测器;步骤S4,设计不完全扰动补偿变速趋近滑模控制器;步骤S5,设计闭环系统Lyapunov稳定性分析函数;本发明无需获取泵控电液转向系统精确模型和扰动上界,就能实现高精度转向控制。

Patent Agency Ranking