一种逆阻型IGBT
    1.
    发明授权

    公开(公告)号:CN107731901B

    公开(公告)日:2024-02-23

    申请号:CN201711155622.1

    申请日:2017-11-20

    Abstract: 本发明属于功率半导体技术领域,涉及一种逆阻型IGBT。本发明的器件,在正向电场截止层N1下表面形成间断高浓度P+集电区和浮空P1区,且P+集电区和浮空的P1被N1阻隔。施加反向阻断电压时,浮空的P1可辅助耗尽N1,降低高浓度的P+集电区/N1结面处高电场峰值,避免集电结发生提前击穿,最终反向耐压电场被N2以及槽结构共同截止;对器件施加正向阻断电压时,浮空的P1和漂移区被N1阻隔,高浓度的N1使正向电场被截止,耗尽区无法扩展到P1,正向耐压不会发生退化。相比于NPT型IGBT结构,可缩短漂移区厚度,实现导通压降和关断损耗更好的折中特性。

    一种逆阻型IGBT
    3.
    发明公开

    公开(公告)号:CN107749420A

    公开(公告)日:2018-03-02

    申请号:CN201711155364.7

    申请日:2017-11-20

    CPC classification number: H01L29/7397 H01L29/0619 H01L29/402

    Abstract: 本发明属于功率半导体技术领域,涉及一种逆阻型IGBT。本发明的正向电场截至层N1不是连续的电场截止层,且P+集电区和漂移区被N1阻隔,紧邻两相邻P+集电区之间的漂移区背面形成与集电极电气相连的场板。器件的发射极端包含反向电场截止层N2和槽结构。施加反向偏压时,与集电极电气相连的场板将不连续的集电结耗尽线在漂移区中合并起来,在没有完全耗尽高浓度N1时,耗尽区可在漂移区内扩展,避免集电结发生击穿,实现很好的反向阻断能力。相比于也具有反向耐压的NPT型IGBT,施加正向阻断电压时,N1和与集电极电气相连的场板共同作用,使正向电场被截止,在N1、N2和槽结构共同作用下,缩短漂移区长度,实现导通压降和关断损耗更好的折中特性。

    一种逆阻型IGBT
    5.
    发明授权

    公开(公告)号:CN107749420B

    公开(公告)日:2023-09-01

    申请号:CN201711155364.7

    申请日:2017-11-20

    Abstract: 本发明属于功率半导体技术领域,涉及一种逆阻型IGBT。本发明的正向电场截至层N1不是连续的电场截止层,且P+集电区和漂移区被N1阻隔,紧邻两相邻P+集电区之间的漂移区背面形成与集电极电气相连的场板。器件的发射极端包含反向电场截止层N2和槽结构。施加反向偏压时,与集电极电气相连的场板将不连续的集电结耗尽线在漂移区中合并起来,在没有完全耗尽高浓度N1时,耗尽区可在漂移区内扩展,避免集电结发生击穿,实现很好的反向阻断能力。相比于也具有反向耐压的NPT型IGBT,施加正向阻断电压时,N1和与集电极电气相连的场板共同作用,使正向电场被截止,在N1、N2和槽结构共同作用下,缩短漂移区长度,实现导通压降和关断损耗更好的折中特性。

    一种逆阻型IGBT
    7.
    实用新型

    公开(公告)号:CN207409497U

    公开(公告)日:2018-05-25

    申请号:CN201721551911.9

    申请日:2017-11-20

    Abstract: 本实用新型属于功率半导体技术领域,涉及一种逆阻型IGBT。本实用新型的正向电场截至层N1不是连续的电场截止层,且P+集电区和漂移区被N1阻隔,紧邻两相邻P+集电区之间的漂移区背面形成与集电极电气相连的场板。器件的发射极端包含反向电场截止层N2和槽结构。施加反向偏压时,与集电极电气相连的场板将不连续的集电结耗尽线在漂移区中合并起来,在没有完全耗尽高浓度N1时,耗尽区可在漂移区内扩展,避免集电结发生击穿,实现很好的反向阻断能力。相比于也具有反向耐压的NPT型IGBT,施加正向阻断电压时,N1和与集电极电气相连的场板共同作用,使正向电场被截止,在N1、N2和槽结构共同作用下,缩短漂移区长度,实现导通压降和关断损耗更好的折中特性。(ESM)同样的发明创造已同日申请发明专利

    一种逆阻型IGBT
    8.
    实用新型

    公开(公告)号:CN207409496U

    公开(公告)日:2018-05-25

    申请号:CN201721552279.X

    申请日:2017-11-20

    Abstract: 本实用新型属于功率半导体技术领域,涉及一种逆阻型IGBT。本实用新型的器件,在正向电场截止层N1下表面形成间断高浓度P+集电区和浮空P1区,且P+集电区和浮空的P1被N1阻隔。施加反向阻断电压时,浮空的P1可辅助耗尽N1,降低高浓度的P+集电区/N1结面处高电场峰值,避免集电结发生提前击穿,最终反向耐压电场被N2以及槽结构共同截止;对器件施加正向阻断电压时,浮空的P1和漂移区被N1阻隔,高浓度的N1使正向电场被截止,耗尽区无法扩展到P1,正向耐压不会发生退化。相比于NPT型IGBT结构,可缩短漂移区厚度,实现导通压降和关断损耗更好的折中特性。(ESM)同样的发明创造已同日申请发明专利

    一种具有快速关断特性的SOI LIGBT

    公开(公告)号:CN108321194A

    公开(公告)日:2018-07-24

    申请号:CN201810113221.8

    申请日:2018-02-05

    Abstract: 本发明属于功率半导体技术领域,具体涉及一种具有快速关断特性的SOI LIGBT。本发明与传统的SOI LIGBT相比,阴极引入连接阴极电位的阴极槽,阴极槽延伸至阴极P阱区以下,且阴极槽在靠近阳极结构一侧与P+体接触区接触,同时在阳极端引入两个高浓度P型掺杂的导电材料的阳极槽结构,导电材料接阳极电位;器件正向导通时,阴极空穴积累槽为器件提供了一条空穴旁路,在阴极槽壁上积累空穴,使器件在大的电流密度下抗闩锁能力更强,提升了器件的抗短路能力。在器件关断时,阴极槽和阳极槽分别提供了抽取空穴和电子的低阻通道,快了存储在漂移区内非平衡载流子的抽取,减小关断时间和关断能量损耗。

    一种集成MOS自适应控制SOI LIGBT

    公开(公告)号:CN113066862B

    公开(公告)日:2022-04-22

    申请号:CN202110317574.1

    申请日:2021-03-25

    Abstract: 本发明属于功率半导体技术领域,涉及一种集成MOS自适应控制SOI LIGBT。本发明的主要特征在于:在SOI LIGBT阴极侧集成3个MOS管,且通过氧化隔离槽互相隔离。MOS管通过电气连接可实现自适应控制SOI LIGBT。正向导通时,集成MOS自适应控制SOI LIGBT寄生二极管开启,增强电导调制效应,降低器件导通压降,增加器件饱和电流;关断过程中,集成MOS自适应辅助耗尽漂移区且提供额外的空穴抽取通道,有效降低关断损耗;短路状态下,集成MOS自适应控制SOI LIGBT寄生二极管截止,抑制闩锁效应,提高器件的抗短路能力。本发明的有益效果为,相对于传统SOI LIGBT结构,本发明具有更低的导通压降、更低的关断损耗、更高的饱和电流以及更长的短路耐受时间。

Patent Agency Ranking