-
公开(公告)号:CN106772786B
公开(公告)日:2019-11-26
申请号:CN201710031428.6
申请日:2017-01-17
Applicant: 烽火通信科技股份有限公司 , 烽火藤仓光纤科技有限公司
Abstract: 本发明公开了一种支持多个线偏振模式与轨道角动量模式的少模光纤,自内而外依次包括第一芯层、第二芯层、第一包层、第二包层、第三包层和有机材料涂覆层;所述第一芯层与所述第一包层的相对折射率差最大值为0.2%~1.2%,所述第一芯层与所述第一包层的相对折射率差最小值为0.05%~0.6%;所述第二芯层与所述第三包层的相对折射率差为0.2%~1.2%;所述第一包层与所述第二包层的相对折射率差为0%~1.1%。本发明通过在掺氟石英内包层处增加第二芯区的设计有效增加了光纤不支持模式的损耗,有利于光纤模式传输的稳定性,同时支持线偏振模式和轨道角动量模式(OAM模式),通过调整光纤芯区的折射率分布以及第二芯层的设计能够调整该光纤中差分群时延。
-
公开(公告)号:CN102096146A
公开(公告)日:2011-06-15
申请号:CN201010592544.3
申请日:2010-12-17
Applicant: 烽火通信科技股份有限公司
IPC: G02B6/036 , G02B6/028 , G02B6/02 , C03B37/027 , H04B10/18
CPC classification number: C03B37/01807 , C03B2201/12 , C03B2201/31 , C03B2203/22 , Y02P40/57
Abstract: 本发明公开了一种高负色散光纤、制造方法及色散补偿模块,高负色散光纤包括芯层和围绕芯层的包层,芯层包括中心层和依次围绕中心层的第一、第二、第三、第四纤芯分层,第一纤芯分层的相对折射率Δb%为1.9%~2.9%;第二纤芯分层的相对折射率Δc%为-1.2%~2.9%;第三纤芯分层的相对折射率Δe%为-0.8%~-1.2%;第四纤芯分层的相对折射率Δf%为0.2%~0.7%,四个纤芯分层的半径从第一纤芯分层开始向外分别为0.2~0.6微米,1.2~19微米,3.6~5.6微米,6.6~8.5微米。本发明提供的高负色散光纤,具有较高的色散补偿率和较高的品质因数,较低的弯曲损耗,有助于通信系统链路累积正色散的补偿,提高密集波分通信系统的传输速率与容量。
-
公开(公告)号:CN102073093A
公开(公告)日:2011-05-25
申请号:CN201010556038.9
申请日:2010-11-24
Applicant: 烽火通信科技股份有限公司
IPC: G02B6/02 , C03B37/018 , C03B37/025
CPC classification number: C03B37/01838 , C03B2201/40 , C03B2203/22
Abstract: 本发明涉及光纤制造技术领域,具体说是一种高衰减光纤及其制造方法,包括芯层和围绕芯层的包层,在包层外表面涂覆有有机涂层材料,所述芯层由对1250nm~1625nm波长的光有较大吸收能力、且在该波段内具有平坦的吸收特性的金属离子组成,所述金属离子包括金属钴离子和金属铁离子,或金属钴离子和金属铬离子。本发明所述的高衰减光纤及其制造方法,能够满足大容量密集波分通信系统、大功率CATV系统,以及其它电信系统的应用需求,改善系统的传输与接收性能。
-
公开(公告)号:CN102073093B
公开(公告)日:2012-10-17
申请号:CN201010556038.9
申请日:2010-11-24
Applicant: 烽火通信科技股份有限公司
IPC: G02B6/02 , C03B37/018 , C03B37/025
CPC classification number: C03B37/01838 , C03B2201/40 , C03B2203/22
Abstract: 本发明涉及光纤制造技术领域,具体是一种高衰减光纤及其制造方法,包括芯层和围绕芯层的包层,在包层外表面涂覆有有机涂层材料,所述芯层由对1250nm~1625nm波长的光有较大吸收能力、且在该波段内具有平坦的吸收特性的金属离子组成,所述金属离子包括金属钴离子和金属铁离子,或金属钴离子和金属铬离子。本发明所述的高衰减光纤及其制造方法,能够满足大容量密集波分通信系统、大功率CATV系统,以及其它电信系统的应用需求,改善系统的传输与接收性能。
-
公开(公告)号:CN100587528C
公开(公告)日:2010-02-03
申请号:CN200810224564.8
申请日:2008-10-21
Applicant: 烽火通信科技股份有限公司
Abstract: 本发明涉及一种增益光子晶体光纤波导,它由芯层和围绕芯层的包层组成。该光纤的内包层由掺锗石英圆柱形成的固态微结构点阵组成,它形成该增益光纤的外带隙,其功能是将多模泵浦光严格限制在具有稀土掺杂离子的第二纤芯区域中,提高泵浦光的利用效率;该光纤的第二纤芯由掺稀土离子石英圆柱形成的固态微结构点阵组成增益光纤的内带隙,其功能是在多模泵浦光的作用下产生的激光严格限制在高纯石英玻璃组成的第一纤芯区域中。采用该固态增益光子晶体光纤可以大大地提升泵浦光的利用效率,改善输出激光光束质量,提高光纤激光器的输出功率,降低高功率激光器件的非线性效应。
-
公开(公告)号:CN1251985C
公开(公告)日:2006-04-19
申请号:CN200410008654.5
申请日:2004-03-18
Applicant: 烽火通信科技股份有限公司
Abstract: 本发明涉及一种降低光纤氢损的光纤氘处理方法以及该方法所使用的设备,本发明方法和设备的主要特点在于:在一般温度下对拉制成型的光纤进行氘处理,降低和消除光纤内的缺陷,从而降低光纤氢损。使用本发明方法和设备所处理的光纤在1383nm氢损的附加损耗小于等于0.01dB/km。
-
公开(公告)号:CN116009141B
公开(公告)日:2024-01-12
申请号:CN202310098368.5
申请日:2023-02-10
Applicant: 烽火通信科技股份有限公司 , 烽火藤仓光纤科技有限公司
IPC: G02B6/028
Abstract: 本申请涉及一种DMD优化渐变多模光纤,其包括沿多模光纤径向,由内到外依次设置的纤芯层、内包层、下陷包层和外包层;其中,沿多模光纤径向,所述内包层包括由内到外依次设置的第一部分和第二部分,所述第一部分相对纯石英玻璃的折射率随多模光纤的半径增大而呈直线逐步下降,所述第二部分相对纯石英玻璃的折射率随多模光纤的半径增大而呈直线逐步上升。本申请通过将内包层进行两段控制,使得所述内包层的折射率剖面成V字型的折线,优化了多模光纤的纤芯层起始位置的DMD,改善纤芯层起始位置高阶模的传输性能,同时兼顾DMD、满注入有效带宽、有效带宽,提高高端多模光纤的产出比例,从而提高产品质量,提高利润率。
-
公开(公告)号:CN104793285B
公开(公告)日:2018-01-02
申请号:CN201510217081.5
申请日:2015-04-29
Applicant: 武汉邮电科学研究院 , 烽火通信科技股份有限公司
CPC classification number: G02B6/03666 , G02B6/0288
Abstract: 本发明公开了一种低损耗少模光纤,涉及光通信及相关传感器件技术领域,所述少模光纤自内而外依次包括芯层、掺氟石英内包层、掺氟石英第二芯层、掺氟石英下陷包层以及掺氟石英外包层;所述芯层中未掺杂锗元素,该芯层的折射率呈渐变分布,且分布为幂指数分布;芯层与掺氟石英内包层的相对折射率差最大值为0.3%~0.9%;掺氟石英内包层相对合成石英的相对折射率差为‑0.3%~‑0.5%;掺氟石英第二芯层与掺氟石英内包层相对折射率差为0.05%~0.2%;掺氟石英下陷包层与掺氟石英内包层的相对折射率差为‑0.1%~‑0.5%;掺氟石英外包层相对合成石英的相对折射率差为‑0.3%~‑0.5%。本发明降低了少模光纤所支持线偏振模式光信号的传输损耗及中继成本。
-
公开(公告)号:CN106154410A
公开(公告)日:2016-11-23
申请号:CN201610778208.5
申请日:2016-08-30
Applicant: 烽火通信科技股份有限公司
IPC: G02B6/036 , C03B37/025
CPC classification number: G02B6/03627 , C03B37/025
Abstract: 本发明公开了一种单模光纤及其制造方法,单模光纤的裸光纤由内至外依次为纤芯层、内包层和外包层,纤芯层和内包层材质均为掺锗和掺氟的石英玻璃,外包层的材质为掺氟的石英玻璃,外包层采用MCVD工艺制作,纤芯层和内包层均采用PCVD沉积法制作。本发明,通过在少量掺锗的纤芯层中精确掺杂氟,以确保纤芯层与包层粘度匹配,从而降低纤芯层与包层间的应力,而且由于结构类似常规单模光纤,可以替代常规单模光纤进行长距离传输,因此可以在降低光纤损耗的同时,实现与常规单模光纤的良好兼容。
-
公开(公告)号:CN104793285A
公开(公告)日:2015-07-22
申请号:CN201510217081.5
申请日:2015-04-29
Applicant: 武汉邮电科学研究院 , 烽火通信科技股份有限公司
CPC classification number: G02B6/03666 , G02B6/0288
Abstract: 本发明公开了一种低损耗少模光纤,涉及光通信及相关传感器件技术领域,所述少模光纤自内而外依次包括芯层、掺氟石英内包层、掺氟石英第二芯层、掺氟石英下陷包层以及掺氟石英外包层;所述芯层中未掺杂锗元素,该芯层的折射率呈渐变分布,且分布为幂指数分布;芯层与掺氟石英内包层的相对折射率差最大值为0.3%~0.9%;掺氟石英内包层相对合成石英的相对折射率差为-0.3%~-0.5%;掺氟石英第二芯层与掺氟石英内包层相对折射率差为0.05%~0.2%;掺氟石英下陷包层与掺氟石英内包层的相对折射率差为-0.1%~-0.5%;掺氟石英外包层相对合成石英的相对折射率差为-0.3%~-0.5%。本发明降低了少模光纤所支持线偏振模式光信号的传输损耗及中继成本。
-
-
-
-
-
-
-
-
-