交通执法影像中基于AI技术的闯红灯违法车辆匹配方法

    公开(公告)号:CN114387572A

    公开(公告)日:2022-04-22

    申请号:CN202210027025.5

    申请日:2022-01-11

    Abstract: 本发明公开了一种交通执法影像中基于AI技术的闯红灯违法车辆匹配方法。该方法从连续多张违法影像中按照时间戳依次获取违法影像,先通过定位模块定位得到违法影像中的所有车辆作为候选车辆集合;再针对候选车辆集合中的每一辆候选车辆,通过车牌识别模型识别出候选车辆车牌号,同时通过所述车辆分类模型得到候选车辆类别概率分布;然后计算候选车辆集合中的每一辆候选车辆与目标车辆之间的匹配指数,将匹配指数最小的候选车辆作为匹配车辆。本发明提供的车辆匹配方法具有较高的匹配准确率,即使在黑夜、阴天、雨天、雾天场景下,仍具有不错的表现。而且本发明将极大减轻人工工作量,同时还可以减少执法尺度不一、疲劳判读、错误判读等情况的发生。

    一种基于注意力机制的晶圆特征模块检测方法

    公开(公告)号:CN119600308B

    公开(公告)日:2025-05-09

    申请号:CN202510142955.9

    申请日:2025-02-10

    Abstract: 本发明公开了一种基于注意力机制的晶圆特征模块检测方法。该方法首先收集不同光源拍摄下的晶圆图像作为训练样本,标注图像中晶圆特征模块的信息,作为训练标签;基于元学习的方法,将训练集随机划分为支持集和查询集。通过骨干网络,分别从支持集和查询集的图像中提取得到特征图X和特征图Y。利用特征图X生成一组卷积核,用于对特征图Y进行深度卷积,然后通过RPN网络生成查询集的预测框。利用训练标签,对生成的预测框进行判别,并计算损失函数完成对模型参数的优化;将特征模块位置待检测的晶圆图像作为查询集,与支持集一同输入训练后的模型中,得到查询集的晶圆图像是否存在特征模块以及特征模块位置的预测结果。

    一种基于注意力机制的晶圆特征模块检测方法

    公开(公告)号:CN119600308A

    公开(公告)日:2025-03-11

    申请号:CN202510142955.9

    申请日:2025-02-10

    Abstract: 本发明公开了一种基于注意力机制的晶圆特征模块检测方法。该方法首先收集不同光源拍摄下的晶圆图像作为训练样本,标注图像中晶圆特征模块的信息,作为训练标签;基于元学习的方法,将训练集随机划分为支持集和查询集。通过骨干网络,分别从支持集和查询集的图像中提取得到特征图X和特征图Y。利用特征图X生成一组卷积核,用于对特征图Y进行深度卷积,然后通过RPN网络生成查询集的预测框。利用训练标签,对生成的预测框进行判别,并计算损失函数完成对模型参数的优化;将特征模块位置待检测的晶圆图像作为查询集,与支持集一同输入训练后的模型中,得到查询集的晶圆图像是否存在特征模块以及特征模块位置的预测结果。

    交通执法影像中基于AI技术的闯红灯违法车辆匹配方法

    公开(公告)号:CN114387572B

    公开(公告)日:2024-04-09

    申请号:CN202210027025.5

    申请日:2022-01-11

    Abstract: 本发明公开了一种交通执法影像中基于AI技术的闯红灯违法车辆匹配方法。该方法从连续多张违法影像中按照时间戳依次获取违法影像,先通过定位模块定位得到违法影像中的所有车辆作为候选车辆集合;再针对候选车辆集合中的每一辆候选车辆,通过车牌识别模型识别出候选车辆车牌号,同时通过所述车辆分类模型得到候选车辆类别概率分布;然后计算候选车辆集合中的每一辆候选车辆与目标车辆之间的匹配指数,将匹配指数最小的候选车辆作为匹配车辆。本发明提供的车辆匹配方法具有较高的匹配准确率,即使在黑夜、阴天、雨天、雾天场景下,仍具有不错的表现。而且本发明将极大减轻人工工作量,同时还可以减少执法尺度不一、疲劳判读、错误判读等情况的发生。

Patent Agency Ranking