联邦学习方法、服务端设备、客户端设备及系统

    公开(公告)号:CN117350405A

    公开(公告)日:2024-01-05

    申请号:CN202311483682.1

    申请日:2023-11-08

    Abstract: 本公开提供一种联邦学习方法、服务端设备、客户端设备及系统,服务端设备根据获得的至少部分客户端设备的第i轮客户端梯度数据确定第i轮全局网络模型,并根据第i轮全局网络模型、以及服务端设备存储的任意客户端设备的第i轮局部网络模型,确定针对任意客户端设备的第i+1轮服务端梯度数据,以向任意客户端设备发送该第i+1轮服务端梯度数据,一方面,根据部分客户端设备的客户端梯度数据实现迭代更新,可以实现异步联邦学习,从而减少服务端设备的等待时间,提高联邦学习的效率;另一方面,服务端设备向客户端设备发送服务端梯度数据,可以减少服务端设备与客户端设备之间交互的信息的数据量,从而减少通信资源的消耗。

    推荐内容管理方法及装置、电子设备及存储介质

    公开(公告)号:CN116610869B

    公开(公告)日:2023-10-13

    申请号:CN202310862674.1

    申请日:2023-07-13

    Abstract: 本说明书一个或多个实施例提供一种推荐内容管理方法及装置、电子设备及存储介质,所述方法包括:向服务端发送内容推荐请求,其中,所述内容推荐请求用于请求所述服务端生成并返回针对显示界面的多个显示区的推荐内容;接收所述服务端返回的多个推荐内容,以及所述多个推荐内容中每个推荐内容的数据标签,其中,所述多个推荐内容中每个推荐内容的数据标签由所述服务端每个推荐内容进行NER实体抽取得到,所述多个推荐内容与所述多个显示区一一对应;根据所述多个推荐内容中每个推荐内容的数据标签,对所述多个推荐内容进行去重处理,并将去重处理后剩余的至少一个推荐内容曝光于对应的显示区。

    信息推荐方法及装置、存储介质

    公开(公告)号:CN116610873A

    公开(公告)日:2023-08-18

    申请号:CN202310887568.9

    申请日:2023-07-19

    Abstract: 本说明书提供一种信息推荐方法及装置、存储介质,该方法包括:基于用户对云节点下发的至少一个第一推荐信息的操作行为,得到实时特征信息;将实时特征信息发送给边缘节点;接收并存储边缘节点返回的目标特征信息,目标特征信息是用于表征用户的历史操作行为和实时操作行为之间的共性的特征信息;基于目标特征信息,对云节点下发的至少一个第二推荐信息进行重排序后输出。本公开可以利用边缘节点的算力为客户端提供更精准表征用户操作行为的目标特征信息,扩展了客户端上表征用户操作行为的特征信息的丰富度,且可以减少信息推荐的时延,能够更合理的利用端边云各个设备的资源,提高了端边云架构的可用性。

    端边云协同的模型训练方法及装置

    公开(公告)号:CN116562399A

    公开(公告)日:2023-08-08

    申请号:CN202310844489.X

    申请日:2023-07-10

    Abstract: 本说明书一个或多个实施方式提供了一种端边云协同的模型训练方法及装置,模型训练方法包括接收与边缘节点所对应的各个应用端发送的梯度信息,基于接收到的各个应用端发送的梯度信息进行聚合处理得到聚合梯度数据,将聚合梯度数据发送至云服务器,以及云服务器根据聚合梯度数据对全局模型进行训练。本说明书实施方式中,通过边缘节点对应用端的梯度信息进行聚合处理,从而缩减梯度信息的数据量,而且可以最大程度保留全部梯度信息的特征,因此后续云服务器的模型训练仍然是建立在全局视野,在较少丢失信息的情况下,加快模型训练速度,保证模型的精度和效果。

    一种聚类模型训练、用户聚类、信息推送方法及装置

    公开(公告)号:CN116401567A

    公开(公告)日:2023-07-07

    申请号:CN202310653728.3

    申请日:2023-06-02

    Abstract: 本说明书实施例提供了一种聚类模型训练、用户聚类、信息推送方法及装置。聚类模型包含父类簇和子类簇等多层类簇。聚类模型的待学习变量包括末端子类簇中心。在聚类模型的一次迭代训练中,通过聚类模型,从多层类簇的类簇中心中确定与用户特征匹配的末端子类簇中心,得到用户样本归属的末端子类簇。基于匹配的末端子类簇中心与用户特征之间的相似度确定预测损失,基于预测损失更新待学习变量。当聚类模型经过训练后,从中导出类簇标识与类簇中心的对应关系。该聚类模型可以确定新用户样本归属的类簇标识。在信息推送场景中,利用上述对应关系可以从用户标识查询到对应的类簇中心,将该类簇中心作为用户样本的特征向量,用于信息推送。

Patent Agency Ranking