信息推送的方法及装置
    2.
    发明授权

    公开(公告)号:CN116383458B

    公开(公告)日:2023-08-11

    申请号:CN202310650591.6

    申请日:2023-06-02

    Abstract: 本说明书实施例提供一种信息推送的方法及装置,在信息推送的排序过程中将用于粗排的第一子网络和用于精排的第二子网络同时连接在嵌入模块之后,并增加动态选择模块完成第一子网络至第二子网络的连接,从而,在信息推送过程中在一个模型架构下完成信息排序,可以减少模型调用次数,且嵌入模块的嵌入结果可以由第一子网络和第二子网络共用。在信息推送过程中,先由第一子网络对候选信息进行粗排过滤,从而经由动态选择模块选择不固定条数的候选信息作为优选信息进行精排打分,之后,将优选信息的精排打分和其他候选信息的粗排打分结果一起进行融合排序,以按照打分结果进行信息推送。如此,可以提高信息推送的处理效率。

    一种计算图改进、信息推送方法及装置

    公开(公告)号:CN116384473B

    公开(公告)日:2023-08-08

    申请号:CN202310652126.6

    申请日:2023-06-02

    Abstract: 本说明书实施例提供了一种计算图改进、信息推送方法及装置。信息推送模型用于针对用户确定多条待选推送信息的评分。在该方法中,获取用户特征和待选推送信息特征,并据此特征对计算图的特征输入节点和其他节点进行类别标记,标记为与用户特征相关联的第一类,或者与待选推送信息特征相关联的第二类。接着,在属于第一类的特征输入节点与其下游节点之间增加切分节点,切分节点可以对输入的高维数据进行切分,并输出得到的低维数据。还要从其他节点中确定自身类别为第一类、其下游节点的类别为第二类的节点,作为用户特征叶节点。接着,在用户特征叶节点与其下游节点之间增加复制节点,复制节点对输入的低维数据进行复制,输出得到的高维数据。

    一种聚类模型训练、用户聚类、信息推送方法及装置

    公开(公告)号:CN116401567A

    公开(公告)日:2023-07-07

    申请号:CN202310653728.3

    申请日:2023-06-02

    Abstract: 本说明书实施例提供了一种聚类模型训练、用户聚类、信息推送方法及装置。聚类模型包含父类簇和子类簇等多层类簇。聚类模型的待学习变量包括末端子类簇中心。在聚类模型的一次迭代训练中,通过聚类模型,从多层类簇的类簇中心中确定与用户特征匹配的末端子类簇中心,得到用户样本归属的末端子类簇。基于匹配的末端子类簇中心与用户特征之间的相似度确定预测损失,基于预测损失更新待学习变量。当聚类模型经过训练后,从中导出类簇标识与类簇中心的对应关系。该聚类模型可以确定新用户样本归属的类簇标识。在信息推送场景中,利用上述对应关系可以从用户标识查询到对应的类簇中心,将该类簇中心作为用户样本的特征向量,用于信息推送。

    针对多个推荐场景的资源弹性调度方法和装置

    公开(公告)号:CN116385071A

    公开(公告)日:2023-07-04

    申请号:CN202310660434.3

    申请日:2023-06-05

    Abstract: 本说明书实施例提供一种针对多个推荐场景的资源弹性调度方法和装置,方法包括:基于所述多个推荐场景中任一目标场景的历史流量构成的第一流量序列,预测未来的第一时间周期内的各个流量构成的第二流量序列;所述第一时间周期内存在多个决策时刻;基于所述第二流量序列,确定所述目标场景在各个决策时刻的资源需求;根据与资源节约以及资源变更有关的多个优化目标,在各个推荐场景满足其对应的资源需求的约束下,确定所述多个推荐场景在未来的各个决策时刻所分配的资源。能够实现多个推荐场景上的资源的自动扩缩容,使得资源的平均水位提高,提升资源整体利用率。

    弹性调节算力的预测方法和装置
    7.
    发明公开

    公开(公告)号:CN115564022A

    公开(公告)日:2023-01-03

    申请号:CN202211173639.0

    申请日:2022-09-26

    Abstract: 本说明书实施例提供一种弹性调节算力的预测方法和装置,通过计算平台执行,该计算平台部署有经过训练的神经网络模型,神经网络模型包括n个子网络,n>2,方法包括:接收预测请求,其中包括待测样本;确定针对所述预测请求分配的算力系数,该算力系数指示,为所述预测请求分配的硬件算力资源与所述神经网络模型全部在所述计算平台运行时所需的总硬件算力资源的比例;根据所述算力系数,确定本次使用的n个子网络中的k个子网络;将所述待测样本输入所述k个子网络,得到预测结果。算力的可弹性伸缩的档位多,弹性调节算力的空间大。

    一种聚类模型训练、用户聚类、信息推送方法及装置

    公开(公告)号:CN116401567B

    公开(公告)日:2023-09-08

    申请号:CN202310653728.3

    申请日:2023-06-02

    Abstract: 本说明书实施例提供了一种聚类模型训练、用户聚类、信息推送方法及装置。聚类模型包含父类簇和子类簇等多层类簇。聚类模型的待学习变量包括末端子类簇中心。在聚类模型的一次迭代训练中,通过聚类模型,从多层类簇的类簇中心中确定与用户特征匹配的末端子类簇中心,得到用户样本归属的末端子类簇。基于匹配的末端子类簇中心与用户特征之间的相似度确定预测损失,基于预测损失更新待学习变量。当聚类模型经过训练后,从中导出类簇标识与类簇中心的对应关系。该聚类模型可以确定新用户样本归属的类簇标识。在信息推送场景中,利用上述对应关系可以从用户标识查询到对应的类簇中心,将该类簇中心作为用户样本的特征向量,用于信息推送。

    一种计算图改进、信息推送方法及装置

    公开(公告)号:CN116384473A

    公开(公告)日:2023-07-04

    申请号:CN202310652126.6

    申请日:2023-06-02

    Abstract: 本说明书实施例提供了一种计算图改进、信息推送方法及装置。信息推送模型用于针对用户确定多条待选推送信息的评分。在该方法中,获取用户特征和待选推送信息特征,并据此特征对计算图的特征输入节点和其他节点进行类别标记,标记为与用户特征相关联的第一类,或者与待选推送信息特征相关联的第二类。接着,在属于第一类的特征输入节点与其下游节点之间增加切分节点,切分节点可以对输入的高维数据进行切分,并输出得到的低维数据。还要从其他节点中确定自身类别为第一类、其下游节点的类别为第二类的节点,作为用户特征叶节点。接着,在用户特征叶节点与其下游节点之间增加复制节点,复制节点对输入的低维数据进行复制,输出得到的高维数据。

    信息推送的方法及装置
    10.
    发明公开

    公开(公告)号:CN116383458A

    公开(公告)日:2023-07-04

    申请号:CN202310650591.6

    申请日:2023-06-02

    Abstract: 本说明书实施例提供一种信息推送的方法及装置,在信息推送的排序过程中将用于粗排的第一子网络和用于精排的第二子网络同时连接在嵌入模块之后,并增加动态选择模块完成第一子网络至第二子网络的连接,从而,在信息推送过程中在一个模型架构下完成信息排序,可以减少模型调用次数,且嵌入模块的嵌入结果可以由第一子网络和第二子网络共用。在信息推送过程中,先由第一子网络对候选信息进行粗排过滤,从而经由动态选择模块选择不固定条数的候选信息作为优选信息进行精排打分,之后,将优选信息的精排打分和其他候选信息的粗排打分结果一起进行融合排序,以按照打分结果进行信息推送。如此,可以提高信息推送的处理效率。

Patent Agency Ranking