一种基于进化GAN的心脏磁共振图像数据增强方法

    公开(公告)号:CN111861924B

    公开(公告)日:2023-09-22

    申请号:CN202010715325.3

    申请日:2020-07-23

    Abstract: 本发明涉及一种基于进化GAN的心脏磁共振图像数据增强方法,该方法在训练生成器时,对生成器进行突变生成多个子代生成器,通过适应性分数函数来评判多个生成器的适应性分数,根据分数来选择最优的子代生成器作为下一个迭代的父代生成器,同时在判别器训练阶段,结合特征向量的线性插值合成新的训练样本并生成相关的线性插值标签,不仅拓展了整个训练集的分布,也对离散样本空间进行连续化并且提高了领域间的平滑性,从而使得模型能够更好地得到训练。本发明的方法图像增强方法,能够生成高质量且多样的样本对训练集进行扩充,最终提高了分类结果的各项指标。

    一种融合白质功能信号的DWI纤维优化重建方法及系统

    公开(公告)号:CN111369637B

    公开(公告)日:2023-07-14

    申请号:CN202010201209.X

    申请日:2020-03-20

    Abstract: 本发明属于医学图像处理技术领域,公开了一种融合白质功能信号的DWI纤维优化重建方法及系统,基于全局优化类的贝叶斯最优路径算法,将白质fMRI融合到DWI全局优化纤维重建中,加入功能先验信息纤维,从全局纤维中找到连接特定功能区域的最优路径。本发明提供了一种将白质fMRI融合到DWI全局优化纤维重建中,加入功能先验信息纤维重建出最优功能路径的方法,可有效抑制局部噪声,得到执行特定功能的最优连接路径,避免得到局部最优解。本发明打破了仅通过空间位置形成最优路径的框架,重建出在执行特定脑活动时,大脑信息传递的最优路径。

    一种基于聚类的云微粒子图像虚假目标滤除方法

    公开(公告)号:CN114648711B

    公开(公告)日:2023-03-10

    申请号:CN202210374321.2

    申请日:2022-04-11

    Abstract: 本发明涉及一种基于聚类的云微粒子图像虚假目标滤除方法,主要包括首先对原始云微粒子图像数据进行聚类和同区域搜索,然后对所有图像数据进行单个云微粒子区域提取,接着将单个云微粒子区域与其所属图像数据中的中心像素块之间的空间重叠关系特征、单个云微粒子区域的长宽比特征及单个云微粒子区域的统计分布特征结合,对原始云微粒子图像中的虚假目标进行滤除,通过该方法来对虚假目标进行滤除,可以提高云微粒子图像中虚假目标滤除的准确性和可靠性。

    一种考场监控视频图像中考生定位方法

    公开(公告)号:CN114708543B

    公开(公告)日:2022-08-30

    申请号:CN202210629393.7

    申请日:2022-06-06

    Abstract: 本发明涉及图像处理领域,具体涉及一种考场监控视频图像中考生定位方法,主要包括,首先根据考场监控视频图像数据中考生的耳朵可见情况、对包含了不同考试场景、不同考生的大量考场监控视频图像数据进行基于考生头顶部头发区域的框选标记,建立考生头顶部头发区域数据集,在此基础上进行基于高虚警率的目标检测的初步筛选,最后建立基于SSD深度学习目标检测的模型,对考生头发区域定位,最终实现考生的定位,该方法提高了对考场监控视频图像中考生定位的准确性、可靠性及泛化能力。

    一种云微粒子图像粒子区域定位方法

    公开(公告)号:CN114677499A

    公开(公告)日:2022-06-28

    申请号:CN202210372813.8

    申请日:2022-04-11

    Abstract: 本发明涉及一种云微粒子图像粒子区域定位方法,主要包括首先对原始云微粒子图像数据进行数据划分和聚类,然后对所有图像数据进行像素块同区域搜索及像素块属性进行判定,接着对附属像素块进行了基于像素块轮次距离和像素块相似性距离的归属可能性值计算的多重归属性进行认定,再云微粒子区域进行定位,通过该方法可提高云微粒子数据中像素块划分的准确性和粒子区域定位准确性。

    基于超像素结构的视觉注意SAR图像目标检测方法

    公开(公告)号:CN108830883A

    公开(公告)日:2018-11-16

    申请号:CN201810567306.3

    申请日:2018-06-05

    Abstract: 本发明公开了一种基于超像素结构的视觉注意SAR图像目标检测方法,属于雷达遥感或图像处理技术,主要解决SAR图像目标检测时检测率低、虚警率和漏检率高以及检测到的目标失真的问题。其实现步骤为:确定待输入的SAR图像,先进行滤波;接着提取灰度和方向初级视觉特征;进行归一化和显著性处理;生成显著图;设定阈值Sth生成二值化的显著图选出候选目标区域;将二值化的显著图和滤波后的图像点乘;用SLIC超像素生成算法将图像分割成超像素区域;设定角点检测的阈值Rth对图像进行Harris角点检测以突出目标与背景的超像素的结构特征的差异;统计每个超像素区域内的角点个数;设定阈值Th进行离群值检测以剔除候选目标区域中包含的虚警,得到最终SAR图像目标检测结果。本发明充分利用超像素、视觉注意、Harris角点检测相结合的方法来实现SAR图像目标检测,得到的检测结果显示本发明方法检测率高、虚警率和漏检率低,并且检测结果不失真,即检测后的SAR图像目标形态能够完整的保留。

    一种全脑时空多层功能连接网络的建模方法

    公开(公告)号:CN119724599A

    公开(公告)日:2025-03-28

    申请号:CN202411803900.X

    申请日:2024-12-10

    Abstract: 本发明提供了一种全脑时空多层功能连接网络的建模方法,包括:对静息态功能磁共振成像数据进行预处理,并提取感兴趣区域的血氧水平依赖信号;采用滑动时间窗口方法将血氧水平依赖信号分为多个具有重叠的时间窗口;基于皮尔逊相关性方法和L1稀疏线性回归算法估计脑区之间的边和超边;基于图论和超图理论将边与超边分别建模为图与超图,并构建空间多层功能连接网络;在每个时间窗口内构建空间多层功能连接网络,以构建全脑时空多层功能连接网络。本发明可以实现对脑FCN的空间与时间多层动态特征的全面描述,提高脑FCN对大脑动态信息的表征能力。

    基于深度学习的多摄像头视频图像拼接方法

    公开(公告)号:CN116721019A

    公开(公告)日:2023-09-08

    申请号:CN202311002747.6

    申请日:2023-08-10

    Abstract: 本发明公开了基于深度学习的多摄像头视频图像拼接方法,包括S1构建对准模型和拼接模型,S2获取训练集导入对准模型和拼接模型,对其进行训练优化;S3获取同一时刻K个摄像头的拍摄的视频帧;S4图像拼接视频帧k和视频帧k+1,获得拼接图;S5判断k+1是否等于K,若是,则拼接图作为最终图像,并输出最终图像;反之,则令k=k+1,然后令拼接图作为视频帧k,并返回S4;读取每个摄像头中的视频帧,再将图片输入对准模型中进行对准,再将对准后的结果输入拼接模型进行拼接,对准模型中引入自注意力机制显著提高参考图像和目标图像中的特征提取效率和精度,拼接模型中引入自注意力机制显著提高参考图像和目标图像中的特征检测效率和精度。

    一种基于多特征的考场监控视频图像中人脸定位方法

    公开(公告)号:CN114694233B

    公开(公告)日:2022-08-23

    申请号:CN202210611129.0

    申请日:2022-06-01

    Abstract: 本发明涉及一种基于多特征的考场监控视频图像中人脸定位方法,主要包括:首先基于SSD目标检测框架,建立针对考场监控视频图像数据中人的头发区域定位的目标检测深度学习模型,对考生头发区域定位,然后对考场监控视频图像数据在不同颜色空间进行基于阈值的像素点检测,并且引入多次索引图像更新方案,实现对皮肤区域的定位,最后将头发区域、皮肤区定位结果进行基于锚框翻转的融合,最终实现人脸的定位,该方法提高了对考场监控视频图像中人脸定位的准确性、可靠性及泛化能力。

Patent Agency Ranking