一种固定场景监控视频目标检测方法

    公开(公告)号:CN117456426A

    公开(公告)日:2024-01-26

    申请号:CN202311698456.5

    申请日:2023-12-12

    Abstract: 本发明涉及一种固定场景监控视频目标检测方法,主要目的是提高目标检测的准确性和效率。本方法结合了多帧分析和多尺度处理技术,首先通过随机选择多个帧及其前一帧与背景帧进行比较,快速捕捉场景中的变化。接着,利用多尺度差分技术,将随机帧及其前一帧的结果相乘,有效减少误判和漏判的可能性。此外,本方法采用多帧综合判断机制,只有在多个随机帧中的大部分指示存在新增目标时,才确认目标的存在。这种方法不仅增强了对小目标和远距离目标的检测能力,也提高了在低对比度场景中的表现。通过这种综合的目标检测策略,本发明显著提升了视频监控系统在复杂环境下的目标检测效率和准确性。

    一种云微粒子数据区域提取方法

    公开(公告)号:CN114708279A

    公开(公告)日:2022-07-05

    申请号:CN202210374304.9

    申请日:2022-04-11

    Abstract: 本发明涉及一种云微粒子数据区域提取方法,主要包括对云微粒子数据进行数据集筛选和聚类,然后对所有图像数据中的像素块属性进行初步确认,在对初步确认的中心像素块和附属像素块分别进行中心像素块同区域搜索和附属像素块同区域搜索后,以中心像素块为核心,以归属于该中心像素块的附属像素块为扩展区域,两者共同作为单个云微粒子区域,以单个云微粒子区域为对象进行云微粒子提取,通过该方法提高了云微粒子数据区域提取的完整性和准确性。

    基于区域增长的遥感图像云检测方法

    公开(公告)号:CN109800713A

    公开(公告)日:2019-05-24

    申请号:CN201910052293.0

    申请日:2019-01-21

    Abstract: 本发明公开了一种基于区域增长的遥感图像云检测方法,属于雷达遥感或图像处理技术,主要解决遥感图像云检测缺少热红外频段数据时检测率低、虚警率高以及检测结果中出现空洞、断裂的问题。其实现步骤为:确定待输入的遥感图像,先进行超像素化处理;接着建立多分辨率模型;对不同分辨率超像素化遥感图像进行不同图像相同编号的超像素斑块分别进行乘和减操作,并对其结果进行归一化处理;采用离群值检测方法分别检测出原始显著超像素块和原始显著区域超像素块;采用基于超像素块加权相似性方法检测出云目标;本发明可以在缺少热红外频段数据的情况下实现高分辨率遥感图像云区域的检测,并且以超像素为检测单元,避免检测结果中出现空洞、断裂等情况,以显著超像素块与显著区域超像素块的加权相似性滤除虚警,有效的提高遥感图像云目标检测的检测率,降低检测的虚警率。

    基于超像素结构的视觉注意SAR图像目标检测方法

    公开(公告)号:CN108830883A

    公开(公告)日:2018-11-16

    申请号:CN201810567306.3

    申请日:2018-06-05

    Abstract: 本发明公开了一种基于超像素结构的视觉注意SAR图像目标检测方法,属于雷达遥感或图像处理技术,主要解决SAR图像目标检测时检测率低、虚警率和漏检率高以及检测到的目标失真的问题。其实现步骤为:确定待输入的SAR图像,先进行滤波;接着提取灰度和方向初级视觉特征;进行归一化和显著性处理;生成显著图;设定阈值Sth生成二值化的显著图选出候选目标区域;将二值化的显著图和滤波后的图像点乘;用SLIC超像素生成算法将图像分割成超像素区域;设定角点检测的阈值Rth对图像进行Harris角点检测以突出目标与背景的超像素的结构特征的差异;统计每个超像素区域内的角点个数;设定阈值Th进行离群值检测以剔除候选目标区域中包含的虚警,得到最终SAR图像目标检测结果。本发明充分利用超像素、视觉注意、Harris角点检测相结合的方法来实现SAR图像目标检测,得到的检测结果显示本发明方法检测率高、虚警率和漏检率低,并且检测结果不失真,即检测后的SAR图像目标形态能够完整的保留。

    一种固定场景下的视频监控动态优化处理方法

    公开(公告)号:CN117714638A

    公开(公告)日:2024-03-15

    申请号:CN202311698249.X

    申请日:2023-12-12

    Abstract: 本发明涉及一种固定场景下的视频监控动态优化处理方法,主要包括对摄像头是否遭遇遮挡的高效判断和对监控区域的智能优先级分配。首先,通过分阶段分析单帧及多帧图像,细致判断摄像头是否被遮挡,有效提高了判断的准确性和响应速度。其次,创新性地对监控场景进行区域划分,并基于各区域的角点变化率与目标出现概率计算区域优先度。这种方法使得监控系统能够根据实时情况动态调整关注焦点,优化资源分配,提高监控效率及事件响应能力,特别适用于需要长时间稳定监控的固定场景。

    一种云微粒子数据区域提取方法

    公开(公告)号:CN114708279B

    公开(公告)日:2023-04-07

    申请号:CN202210374304.9

    申请日:2022-04-11

    Abstract: 本发明涉及一种云微粒子数据区域提取方法,主要包括对云微粒子数据进行数据集筛选和聚类,然后对所有图像数据中的像素块属性进行初步确认,在对初步确认的中心像素块和附属像素块分别进行中心像素块同区域搜索和附属像素块同区域搜索后,以中心像素块为核心,以归属于该中心像素块的附属像素块为扩展区域,两者共同作为单个云微粒子区域,以单个云微粒子区域为对象进行云微粒子提取,通过该方法提高了云微粒子数据区域提取的完整性和准确性。

    基于超像素结构的视觉注意SAR图像目标检测方法

    公开(公告)号:CN108830883B

    公开(公告)日:2022-04-01

    申请号:CN201810567306.3

    申请日:2018-06-05

    Abstract: 本发明公开了一种基于超像素结构的视觉注意SAR图像目标检测方法,属于雷达遥感或图像处理技术,主要解决SAR图像目标检测时检测率低、虚警率和漏检率高以及检测到的目标失真的问题。其实现步骤为:确定待输入的SAR图像,先进行滤波;接着提取灰度和方向初级视觉特征;进行归一化和显著性处理;生成显著图;设定阈值Sth生成二值化的显著图选出候选目标区域;将二值化的显著图和滤波后的图像点乘;用SLIC超像素生成算法将图像分割成超像素区域;设定角点检测的阈值Rth对图像进行Harris角点检测以突出目标与背景的超像素的结构特征的差异;统计每个超像素区域内的角点个数;设定阈值Th进行离群值检测以剔除候选目标区域中包含的虚警,得到最终SAR图像目标检测结果。本发明充分利用超像素、视觉注意、Harris角点检测相结合的方法来实现SAR图像目标检测,得到的检测结果显示本发明方法检测率高、虚警率和漏检率低,并且检测结果不失真,即检测后的SAR图像目标形态能够完整的保留。

Patent Agency Ranking