一种基于多任务学习的心肌图像分割和分类方法

    公开(公告)号:CN115908358B

    公开(公告)日:2025-04-04

    申请号:CN202211564090.8

    申请日:2022-12-07

    Abstract: 本发明涉及一种基于多任务学习的心肌图像分割和分类方法,将经过预处理的心脏MRI图像送入跨任务的特征子网,该子网采用级联的深度分离卷积进行多尺度特征提取,训练共享参数。然后,将得到的特征图分别送入到分割子网和分类子网中进行单独训练。分割子网利用多个长跳跃连接将跨任务特征子网中不同层级和尺度的特征图送入到联合金字塔上采样模块进行多尺度特征融合和上采样,得到与原始图像尺寸相同的心肌分割掩膜;分类子网中利用残差注意力机制提取分类所需的深层特征,有效对心脏MRI图像进行分类,得到扩张型心肌病的诊断结果。

    一种基于多任务学习的心肌图像分割和分类方法

    公开(公告)号:CN115908358A

    公开(公告)日:2023-04-04

    申请号:CN202211564090.8

    申请日:2022-12-07

    Abstract: 本发明涉及一种基于多任务学习的心肌图像分割和分类方法,将经过预处理的心脏MRI图像送入跨任务的特征子网,该子网采用级联的深度分离卷积进行多尺度特征提取,训练共享参数。然后,将得到的特征图分别送入到分割子网和分类子网中进行单独训练。分割子网利用多个长跳跃连接将跨任务特征子网中不同层级和尺度的特征图送入到联合金字塔上采样模块进行多尺度特征融合和上采样,得到与原始图像尺寸相同的心肌分割掩膜;分类子网中利用残差注意力机制提取分类所需的深层特征,有效对心脏MRI图像进行分类,得到扩张型心肌病的诊断结果。

    基于多尺度特征融合和特征增强的遥感图像目标检测方法

    公开(公告)号:CN114708511B

    公开(公告)日:2022-08-16

    申请号:CN202210614648.2

    申请日:2022-06-01

    Abstract: 本发明涉及一种基于多尺度特征融合和特征增强的遥感图像目标检测方法,采用自适应多尺度特征融合模块进行特征融合,融合过程中同时采用更多的横向连接,增加相邻特征之间的交流,充分利用提取的多尺度特征,丰富特征信息,同时增加跳跃连接,让原始特征参与融合过程,提升网络的多尺度特征表达能力。注意力特征增强模块中不同扩张率的多分支空洞卷积以获取不同大小的感受野,当遥感图像中存在不同大小的物体时,可以同时提取不同尺度目标的特征,提高网络对目标尺度的泛化能力,并采用混合注意力机制模块,弱化背景和噪声信息的同时增强目标的特征信息。

    基于物理学结合残差注意力网络的行星边界层参数化方法

    公开(公告)号:CN114896826A

    公开(公告)日:2022-08-12

    申请号:CN202210819294.5

    申请日:2022-07-13

    Abstract: 本发明涉及一种基于物理学结合残差注意力网络的行星边界层参数化方法,设计一种同时结合物理学和深度学习的残差注意力网络,包括依次连接的八个时空结合模块,每个时空结合模块包括通道注意力模块CAB和空间注意力模块PNSAB,通过卷积、CAB模块和PNSAB模块提取重要特征和模拟具体的物理过程,CAB模块用来模拟大气湍流过程中的能量交换,让网络不断地学习大气物理常识,PNSAB模块去挑选对于预测结果比较重要的气象要素,能够有效的替换传统模式中的参数化,设计的多个模块协同作用模拟边界层中的物理过程。本发明的模型能更好地模拟边界层内的速度、温度、风速和水汽的垂直分布,同时使用较低的计算成本和较短的时间。

    一种基于测地线距离的异常点检测方法

    公开(公告)号:CN108921192B

    公开(公告)日:2020-01-21

    申请号:CN201810517949.7

    申请日:2018-05-25

    Abstract: 本发明涉及一种基于测地线距离的异常点检测方法,其包括:输入数据集X;针对数据集X构建邻接图G,利用Dijkstra算法创建测地距离矩阵;针对各样本点计算测地距离ηi以及各点的度deg(xi);计算平均测地距离设定阈值τ,计算样本点的实际度Rdeg(xi);判断特殊点和异常点。本发明提高了异常点检测的性能,更好的反应了数据集的结构特征,且可同时检测到异常点和边缘点。此外,本发明的方法受数据分布和数据维度影响较弱,在实际应用中适用范围更广,解决了现有技术对异常点的检测精度不高和对高维数据检测性能不佳的缺陷。

    一种预测DNA-蛋白质结合的双向LSTM和CNN模型

    公开(公告)号:CN109559781A

    公开(公告)日:2019-04-02

    申请号:CN201811244350.7

    申请日:2018-10-24

    Abstract: 本发明提出了一种预测DNA-蛋白质结合的双向LSTM和CNN模型,其中包括输入层、BLSTM层、卷积层、最大池化层、全连接层和输出层。输入层使用独热编码将每个输入序列表示为4行二进制矩阵;在BLSTM层中,前一层中的每个LSTM模型将从输入序列中接收DNA上感兴趣的信息,对从过去历史信息传递到隐藏状态的贡献进行编码解释;然后将其传播到下一个BLSTM模块中;卷积层中每个卷积核扫描输入的矩阵用于模体发现,不同强度的信息关联潜在的序列模式;最大池化层用于最大化每个卷积核的输出信号使其成一个完整的序列;输出层执行非线性转换以确定DNA-蛋白质结合的特征信息。

    多尺度特征融合的复杂环境下违禁物品检测方法和装置

    公开(公告)号:CN117765378A

    公开(公告)日:2024-03-26

    申请号:CN202410197246.6

    申请日:2024-02-22

    Abstract: 本发明提出一种多尺度特征融合的复杂环境下违禁物品检测方法和装置,通过加强局部特征提取和缓解特征融合的语义冲突来提高对重叠目标和小目标的检测能力,设计多尺度注意力模块主干增强网络对重叠物体的局部特征提取能力,引入挤压激励注意力机制减少目标区域的冗余信息;针对小目标的信息丢失问题,设计自适应融合特征金字塔网络,引入包含细节信息的浅层特征和包含语义信息的深层特征防止小目标信息丢失;采用自适应权重融合策略和通道注意力机制,避免直接融合造成的目标信息丢失。实验结果表明,与现有方法相比,本发明即使在物品遮挡严重、背景复杂的情况下也能准确检测出目标,同时具有更优秀的小目标检测能力。

    一种基于无锚的增量式目标检测方法

    公开(公告)号:CN113822368B

    公开(公告)日:2023-06-20

    申请号:CN202111153974.X

    申请日:2021-09-29

    Abstract: 本发明涉及图像识别领域,具体公开了一种基于无锚的增量式目标检测方法,包括以下步骤:步骤1、选取目标检测模型;步骤2、基于步骤1的目标检测模型,构建小样本目标检测模型;步骤3、对所述小样本目标检测模型进行元训练;步骤4、对训练后的小样本目标检测模型进行元测试。本发明在大量含丰富标签的基类数据(图像)和少量含标签的小样本(few‑shot)新类的训练下,提升了对新类测试图片的检测效果,即提高mAP和AR分数的提升。

    基于多尺度特征融合和特征增强的遥感图像目标检测方法

    公开(公告)号:CN114708511A

    公开(公告)日:2022-07-05

    申请号:CN202210614648.2

    申请日:2022-06-01

    Abstract: 本发明涉及一种基于多尺度特征融合和特征增强的遥感图像目标检测方法,采用自适应多尺度特征融合模块进行特征融合,融合过程中同时采用更多的横向连接,增加相邻特征之间的交流,充分利用提取的多尺度特征,丰富特征信息,同时增加跳跃连接,让原始特征参与融合过程,提升网络的多尺度特征表达能力。注意力特征增强模块中不同扩张率的多分支空洞卷积以获取不同大小的感受野,当遥感图像中存在不同大小的物体时,可以同时提取不同尺度目标的特征,提高网络对目标尺度的泛化能力,并采用混合注意力机制模块,弱化背景和噪声信息的同时增强目标的特征信息。

Patent Agency Ranking