一种基于投票集成学习的心电数据智能分类方法

    公开(公告)号:CN111000553A

    公开(公告)日:2020-04-14

    申请号:CN201911395467.X

    申请日:2019-12-30

    Abstract: 本发明的基于投票集成学习的心电数据智能分类方法,其特征在于,通过以下步骤来实现:a).数据预处理;b).建立logistic回归模型;c).建立决策树模型;d).建立一个支持向量机;e).建立朴素贝叶斯模型;f).建立神经元模型;g).建立k邻近模型;h).模型集成,最终获得一个正确率不低于80%的模型,效果优于步骤b)至步骤g)中建立的单个模型。本发明的心电数据智能分类方法,首先从ccdd中获取足够数量的数据,将其分为训练集和测试集,然后建立各类模型,最后,获得一个正确率不低于80%的模型,可实现对“正常、房颤、房性早搏、偶发房性早搏、频发房性早搏、房性心动过速、房颤伴快速心室率”进行智能识别分类,实现心血管疾病的早发现、早治疗。

    一种深度学习模型的流水线并行训练方法及系统

    公开(公告)号:CN116185604A

    公开(公告)日:2023-05-30

    申请号:CN202211594422.7

    申请日:2022-12-13

    Abstract: 本发明提出了一种深度学习模型的流水线并行训练方法及系统,涉及机器学习技术领域,具体方案包括:获取要训练的模型,对模型中每个网络层所占用的内存量进行预估,得到内存预估序列;利用前缀和分区算法对内存预估序列进行分区,将分区均衡分配到流水线上的GPU中;将训练数据集分批连续传入流水线中,进行流水线并行训练;其中,并行训练过程中,采用同步加异步混合的权重缓冲方式,对网络层的权重进行更新;本发明采用一种权重缓冲策略,保证同一小批数据在执行前向传播和反向传播时使用的是同一个版本的参数,从而提高模型训练精度,节省计算资源内存。

Patent Agency Ranking