-
公开(公告)号:CN119204262A
公开(公告)日:2024-12-27
申请号:CN202411318661.9
申请日:2024-09-20
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N20/00 , G06N3/045 , G06N3/0475 , G06N3/094 , G06F18/2135 , G06F18/22
Abstract: 本发明提供了一种基于联邦学习的客户端选择方法及系统,包括:对参与联邦学习的客户端进行逻辑分组;基于接收到的客户端局部优化后的模型参数,计算其与组内各客户端之间的角距混合相似度;其中,所述角距混合相似度的计算具体为:对客户端局部优化后的模型参数进行主成分分析,基于获得的主成分所对应的分量得分,采用角度和距离结合的方式计算两个客户端的相似度;基于获得客户端与组内其它客户端之间的角距混合相似度,确定当前客户端被选择的权值;基于组内各客户端的权值大小,确定当前迭代轮次参与全局模型聚合的客户端。
-
公开(公告)号:CN117633527A
公开(公告)日:2024-03-01
申请号:CN202311549421.5
申请日:2023-11-17
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/214 , G06N3/126
Abstract: 本发明提出了一种面向异构环境的大模型混合并行训练方法及系统,基于异构环境中不同数据中心的算力情况,以及不同数据中心之间的网络延迟情况,以待训练模型的每个训练阶段中数据中心的算力均衡性和每个训练阶段中数据中心所包含节点的计算任务传输的对等性为目标,利用遗传算法进行迭代优化,得到每个训练阶段所对应的数据中心,以及每个训练阶段内不同节点的计算任务,对待训练模型进行训练,从而将资源平衡和跨域带来的计算成本降低,提升大模型训练效率。
-
公开(公告)号:CN117195001A
公开(公告)日:2023-12-08
申请号:CN202311206504.4
申请日:2023-09-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/22 , G06F18/25 , G06F18/2413 , G06F18/241 , G06F18/21
Abstract: 本发明涉及高性能计算领域,提供了一种基于功耗曲线和脚本信息的HPC作业功耗预测方法及系统。该方法包括基于历史作业功耗曲线数据,得到第一相似度值;基于历史作业脚本信息数据,得到第二相似度值;依据需求,为第一相似度值和第二相似度值分配权重,计算加权求和,得到综合相似度值,以此构建相似度邻接矩阵;以最大化模块度指标为原则,按照相似度邻接矩阵,将HPC作业划分成不同的类别;基于划分后不同类别中历史数据,分别训练不同的神经网络模型,得到已训练的神经网络模型;匹配与目标HPC作业相似的历史作业类别,采用该历史作业类别的神经网络模型对目标HPC作业的脚本信息数据进行预测,得到预测结果。
-
公开(公告)号:CN119557113A
公开(公告)日:2025-03-04
申请号:CN202510131779.9
申请日:2025-02-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明提供了一种用于异构设备的深度学习大模型训练方法及系统,其属于模型训练技术领域,为了解决传统方案在深度学习大模型的训练时,无法对异构GPU集群进行有效利用的问题,所述方案基于提出的虚拟设备概念,通过将待训练的深度学习大模型的不同网络层划分为若干阶段,每个阶段所有网络层的前向传播和反向传播计算均由独立的虚拟设备执行,同时,结合提出的混合并行训练策略来协调不同构的GPU资源的利用,实现高效的模型训练。
-
公开(公告)号:CN119250162A
公开(公告)日:2025-01-03
申请号:CN202411278919.7
申请日:2024-09-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N3/098 , G06N3/045 , G06N3/0985 , G06N3/047
Abstract: 本发明提出了云边协同的模型自动化训练与在线学习集成方法及系统,通过云端对海洋模型进行离线训练,然后将预训练好的海洋模型发布到边缘端进行在线学习推理,以解决在线学习算法在初始模型预测阶段会遇到冷启动问题;将广义相加模型作为贝叶斯优化算法的代理模型,并采用同伦优化方法沿变形路径跟踪局部最小值,通过改进的贝叶斯优化算法对海洋模型进行超参数优化,提高超参数优化的效率和效果,提升海洋模型训练效率,缩短整个流程所需时间。
-
公开(公告)号:CN116681960A
公开(公告)日:2023-09-01
申请号:CN202310551874.5
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于K8s的中尺度涡旋智能识别方法及系统,涉及涡旋识别领域。包括将待识别图像输入到基于深度学习的中尺度涡旋识别模型中,对待识别图像进行特征提取,基于CBAM混合注意力机制进行加权;将输出特征图输入至ASPP中,设置膨胀卷积的膨胀率,同时将ASPP中池化分支替换为深度可分离卷积,得到编码器输出的特征图;将编码器输出的特征图输入解码器中,基于SKNet注意力机制计算不同尺寸感受野的权重,实现中尺度涡旋的智能识别。本发明能够准确的识别出海表面高度图像中的气旋式涡旋和反气旋式涡旋,而且还通过引入注意力机制技术使模型更加精确的分割出涡旋的边界信息,有效的解决了之前方法中的中尺度涡旋识别效果泛化性差的问题。
-
公开(公告)号:CN116681960B
公开(公告)日:2024-11-15
申请号:CN202310551874.5
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于K8s的中尺度涡旋智能识别方法及系统,涉及涡旋识别领域。包括将待识别图像输入到基于深度学习的中尺度涡旋识别模型中,对待识别图像进行特征提取,基于CBAM混合注意力机制进行加权;将输出特征图输入至ASPP中,设置膨胀卷积的膨胀率,同时将ASPP中池化分支替换为深度可分离卷积,得到编码器输出的特征图;将编码器输出的特征图输入解码器中,基于SKNet注意力机制计算不同尺寸感受野的权重,实现中尺度涡旋的智能识别。本发明能够准确的识别出海表面高度图像中的气旋式涡旋和反气旋式涡旋,而且还通过引入注意力机制技术使模型更加精确的分割出涡旋的边界信息,有效的解决了之前方法中的中尺度涡旋识别效果泛化性差的问题。
-
公开(公告)号:CN118779117A
公开(公告)日:2024-10-15
申请号:CN202411258880.2
申请日:2024-09-10
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F9/50 , G06F9/38 , G06F18/214 , G06N3/126
Abstract: 本发明属于大模型训练技术领域,具体涉及一种基于双重优化的大模型广域异构分布式训练方法与系统;基于双重优化的大模型广域异构分布式训练方法包括:获取基座模型的配置信息,进行异构数据中心的拆分,将异构数据中心转换成最多能完成一个stage任务的数据中心;采用蚁群算法对拆分后数据中心进行初始化组合的优化,得到基座模型初步并行组方案;基于遗传算法的优化得到基座模型并行组方案,生成模型训练架构,以完成基于双重优化的大模型广域异构分布式训练。针对真实异构环境下的基座模型训练所面临的架构设计、通信成本计算和难以找到最佳并行组策略的难题,减少了模型训练时间的同时,有效降低了大模型训练的成本和门槛。
-
公开(公告)号:CN117151173A
公开(公告)日:2023-12-01
申请号:CN202311119652.2
申请日:2023-08-31
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/0495 , G06N3/082 , G06N3/084 , G06N3/045 , G06N3/096 , G06N3/0985 , G06F18/214 , G06F18/21 , G06F40/289 , G06F16/35
Abstract: 本发明公开了一种基于元学习的模型压缩方法,包括:获取情感分类数据集并进行数据预处理;将预处理后的数据样本输入至模型压缩模块中,对预训练语言模型压缩,在推理阶段实现情感分类结果的输出,所述模型压缩模块包含微调、剪枝、元学习蒸馏等操作。所述微调阶段,基于数据集训练预训练语言模型得到第一教师模型;剪枝阶段,利用缩放系数剪枝第一教师模型,得到第一学生模型;基于数据集和蒸馏训练方法训练得到第二学生模型,并将第二模型部署于终端,实现情感分类预测。本发明采用模型压缩方法应用于大模型情感分类预测,保证情感分类结果精度的情况下,降低了模型参数量,更利于部署应用。
-
公开(公告)号:CN116185604A
公开(公告)日:2023-05-30
申请号:CN202211594422.7
申请日:2022-12-13
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
Abstract: 本发明提出了一种深度学习模型的流水线并行训练方法及系统,涉及机器学习技术领域,具体方案包括:获取要训练的模型,对模型中每个网络层所占用的内存量进行预估,得到内存预估序列;利用前缀和分区算法对内存预估序列进行分区,将分区均衡分配到流水线上的GPU中;将训练数据集分批连续传入流水线中,进行流水线并行训练;其中,并行训练过程中,采用同步加异步混合的权重缓冲方式,对网络层的权重进行更新;本发明采用一种权重缓冲策略,保证同一小批数据在执行前向传播和反向传播时使用的是同一个版本的参数,从而提高模型训练精度,节省计算资源内存。
-
-
-
-
-
-
-
-
-