-
公开(公告)号:CN119557113A
公开(公告)日:2025-03-04
申请号:CN202510131779.9
申请日:2025-02-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明提供了一种用于异构设备的深度学习大模型训练方法及系统,其属于模型训练技术领域,为了解决传统方案在深度学习大模型的训练时,无法对异构GPU集群进行有效利用的问题,所述方案基于提出的虚拟设备概念,通过将待训练的深度学习大模型的不同网络层划分为若干阶段,每个阶段所有网络层的前向传播和反向传播计算均由独立的虚拟设备执行,同时,结合提出的混合并行训练策略来协调不同构的GPU资源的利用,实现高效的模型训练。
-
公开(公告)号:CN119250162A
公开(公告)日:2025-01-03
申请号:CN202411278919.7
申请日:2024-09-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N3/098 , G06N3/045 , G06N3/0985 , G06N3/047
Abstract: 本发明提出了云边协同的模型自动化训练与在线学习集成方法及系统,通过云端对海洋模型进行离线训练,然后将预训练好的海洋模型发布到边缘端进行在线学习推理,以解决在线学习算法在初始模型预测阶段会遇到冷启动问题;将广义相加模型作为贝叶斯优化算法的代理模型,并采用同伦优化方法沿变形路径跟踪局部最小值,通过改进的贝叶斯优化算法对海洋模型进行超参数优化,提高超参数优化的效率和效果,提升海洋模型训练效率,缩短整个流程所需时间。
-
公开(公告)号:CN118035722A
公开(公告)日:2024-05-14
申请号:CN202410177495.9
申请日:2024-02-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/213 , G06F18/10 , G06N3/0895 , G06F123/02
Abstract: 本发明属于船舷风速预测技术领域,提供了一种基于自监督对比学习的船舷风速校正预测方法及系统,包括:获取海洋观测数据;提取所获取的海洋观测数据的数据特征;对所提取的数据特征进行多粒度对比学习,得到海洋观测数据的不同粒度时间序列数据的特征向量;根据所得到的时间序列数据特征向量,完成船舷风速的校正预测。本发明利用超声波风速数据来校正左右船舷风速,通过构建正负样本对,自动从海洋观测时间序列中提取不同粒度的表征向量,而无需手动调整参数或依赖领域专业知识;具备自动学习数据内在结构和模式的能力,提高对左右船舷风速数据误差的感知,增强校正能力。
-
公开(公告)号:CN116681960A
公开(公告)日:2023-09-01
申请号:CN202310551874.5
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于K8s的中尺度涡旋智能识别方法及系统,涉及涡旋识别领域。包括将待识别图像输入到基于深度学习的中尺度涡旋识别模型中,对待识别图像进行特征提取,基于CBAM混合注意力机制进行加权;将输出特征图输入至ASPP中,设置膨胀卷积的膨胀率,同时将ASPP中池化分支替换为深度可分离卷积,得到编码器输出的特征图;将编码器输出的特征图输入解码器中,基于SKNet注意力机制计算不同尺寸感受野的权重,实现中尺度涡旋的智能识别。本发明能够准确的识别出海表面高度图像中的气旋式涡旋和反气旋式涡旋,而且还通过引入注意力机制技术使模型更加精确的分割出涡旋的边界信息,有效的解决了之前方法中的中尺度涡旋识别效果泛化性差的问题。
-
公开(公告)号:CN119128794A
公开(公告)日:2024-12-13
申请号:CN202411152070.9
申请日:2024-08-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/25 , G06F18/214 , G06N3/0442
Abstract: 本发明提出一种基于记忆重放变分自动编码器的IoT数据在线预测系统,系统包括:预测模块,用于将待预测IoT数据输入至训练好的记忆重放VAE,得到预测结果;训练模块,用于训练记忆重放VAE,记忆重放VAE包括编码器和生成器;记忆重放VAE的训练过程为:将第一样本数据输入编码器,得到第一样本潜在因素和第一样本预测结果;生成器基于第一样本潜在因素得到第一样本重放数据;将第二样本数据和第一样本重放数据输入编码器,得到融合样本潜在因素,以及相应预测结果;基于标签和得到的预测结果,计算损失函数,当损失最小时,训练完成。本发明基于OLVAE结合注意力机制和脑重放机制,缓解编码器对旧知识的遗忘,实现IoT数据的高效预测。
-
公开(公告)号:CN116681960B
公开(公告)日:2024-11-15
申请号:CN202310551874.5
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于K8s的中尺度涡旋智能识别方法及系统,涉及涡旋识别领域。包括将待识别图像输入到基于深度学习的中尺度涡旋识别模型中,对待识别图像进行特征提取,基于CBAM混合注意力机制进行加权;将输出特征图输入至ASPP中,设置膨胀卷积的膨胀率,同时将ASPP中池化分支替换为深度可分离卷积,得到编码器输出的特征图;将编码器输出的特征图输入解码器中,基于SKNet注意力机制计算不同尺寸感受野的权重,实现中尺度涡旋的智能识别。本发明能够准确的识别出海表面高度图像中的气旋式涡旋和反气旋式涡旋,而且还通过引入注意力机制技术使模型更加精确的分割出涡旋的边界信息,有效的解决了之前方法中的中尺度涡旋识别效果泛化性差的问题。
-
公开(公告)号:CN118779117A
公开(公告)日:2024-10-15
申请号:CN202411258880.2
申请日:2024-09-10
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F9/50 , G06F9/38 , G06F18/214 , G06N3/126
Abstract: 本发明属于大模型训练技术领域,具体涉及一种基于双重优化的大模型广域异构分布式训练方法与系统;基于双重优化的大模型广域异构分布式训练方法包括:获取基座模型的配置信息,进行异构数据中心的拆分,将异构数据中心转换成最多能完成一个stage任务的数据中心;采用蚁群算法对拆分后数据中心进行初始化组合的优化,得到基座模型初步并行组方案;基于遗传算法的优化得到基座模型并行组方案,生成模型训练架构,以完成基于双重优化的大模型广域异构分布式训练。针对真实异构环境下的基座模型训练所面临的架构设计、通信成本计算和难以找到最佳并行组策略的难题,减少了模型训练时间的同时,有效降低了大模型训练的成本和门槛。
-
公开(公告)号:CN118519766A
公开(公告)日:2024-08-20
申请号:CN202410597016.9
申请日:2024-05-14
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F9/50
Abstract: 本公开提出一种面向国产异构算力集群的作业调度方法及系统,方法包括:在一个调度周期中,根据待调度作业的资源量、算力类型请求,及节点的算力类型标签,从异构算力集群中筛选出候选节点;考虑异构算力资源的性能差异,基于加权轮询计算候选节点权重,将权重最高的候选节点作为第一目标节点;根据异构算力集群及候选节点中各类资源占比对候选节点的资源使用空间进行评分,将评分最高的候选节点作为第二目标节点;随机选择最终目标节点,将待调度作业调度到最终目标节点。本公开通过在节点预选阶段添加初次筛选提升节点预选效率,在节点优选阶段,考虑异构算力资源性能差异和集群的整体性,克服了负载不均衡、异构算力不兼容的问题。
-
公开(公告)号:CN118211268A
公开(公告)日:2024-06-18
申请号:CN202410428512.1
申请日:2024-04-10
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F21/62 , G06V10/30 , G06V10/774 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/098
Abstract: 本公开提供了基于扩散模型的异构联邦学习隐私保护方法及系统,涉及联邦学习隐私保护技术领域,包括建立服务器端与客户端的通信通道;获取客户端类别分布不均匀的数据上传至服务端,将所述类别分布不均匀的数据作为去噪扩散模型的输入,在服务器端生成符合数据分布的图像;利用生成的图像数据进行异构联邦学习的训练,服务器端初始化全局模型参数,并分发给随机选择的客户端,利用知识蒸馏方法,将全局模型看作教师网络,把上一轮的本地模型看作学生网络,进行本地模型的训练和参数上传,服务端利用各个客户端的上传的本地模型参数进行全局模型聚合,完成知识迁移。
-
公开(公告)号:CN117151173A
公开(公告)日:2023-12-01
申请号:CN202311119652.2
申请日:2023-08-31
Applicant: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心)
IPC: G06N3/0495 , G06N3/082 , G06N3/084 , G06N3/045 , G06N3/096 , G06N3/0985 , G06F18/214 , G06F18/21 , G06F40/289 , G06F16/35
Abstract: 本发明公开了一种基于元学习的模型压缩方法,包括:获取情感分类数据集并进行数据预处理;将预处理后的数据样本输入至模型压缩模块中,对预训练语言模型压缩,在推理阶段实现情感分类结果的输出,所述模型压缩模块包含微调、剪枝、元学习蒸馏等操作。所述微调阶段,基于数据集训练预训练语言模型得到第一教师模型;剪枝阶段,利用缩放系数剪枝第一教师模型,得到第一学生模型;基于数据集和蒸馏训练方法训练得到第二学生模型,并将第二模型部署于终端,实现情感分类预测。本发明采用模型压缩方法应用于大模型情感分类预测,保证情感分类结果精度的情况下,降低了模型参数量,更利于部署应用。
-
-
-
-
-
-
-
-
-