-
公开(公告)号:CN119557113A
公开(公告)日:2025-03-04
申请号:CN202510131779.9
申请日:2025-02-06
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明提供了一种用于异构设备的深度学习大模型训练方法及系统,其属于模型训练技术领域,为了解决传统方案在深度学习大模型的训练时,无法对异构GPU集群进行有效利用的问题,所述方案基于提出的虚拟设备概念,通过将待训练的深度学习大模型的不同网络层划分为若干阶段,每个阶段所有网络层的前向传播和反向传播计算均由独立的虚拟设备执行,同时,结合提出的混合并行训练策略来协调不同构的GPU资源的利用,实现高效的模型训练。
-
公开(公告)号:CN119250162A
公开(公告)日:2025-01-03
申请号:CN202411278919.7
申请日:2024-09-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N3/098 , G06N3/045 , G06N3/0985 , G06N3/047
Abstract: 本发明提出了云边协同的模型自动化训练与在线学习集成方法及系统,通过云端对海洋模型进行离线训练,然后将预训练好的海洋模型发布到边缘端进行在线学习推理,以解决在线学习算法在初始模型预测阶段会遇到冷启动问题;将广义相加模型作为贝叶斯优化算法的代理模型,并采用同伦优化方法沿变形路径跟踪局部最小值,通过改进的贝叶斯优化算法对海洋模型进行超参数优化,提高超参数优化的效率和效果,提升海洋模型训练效率,缩短整个流程所需时间。
-
公开(公告)号:CN114360637B
公开(公告)日:2024-10-29
申请号:CN202210022369.7
申请日:2022-01-10
Applicant: 山东省计算中心(国家超级计算济南中心) , 中国海洋大学
IPC: G16B15/00 , G16B25/00 , G06N3/042 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于图注意力网络的蛋白质‑配体亲和力评价方法。为了解决数据集规模小的问题,本发明模拟半柔性对接过程,设计了基于分子柔性的数据增强方法(Data Enhancement Method based on molecular flexibility),扩大数据规模、提高模型质量、保证了方法的科学性与合理性。本发明设计基于图注意力机制的分子特征提取方法,提取分子有效特征,提高打分函数的精度和性能。
-
公开(公告)号:CN118035722A
公开(公告)日:2024-05-14
申请号:CN202410177495.9
申请日:2024-02-08
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F18/213 , G06F18/10 , G06N3/0895 , G06F123/02
Abstract: 本发明属于船舷风速预测技术领域,提供了一种基于自监督对比学习的船舷风速校正预测方法及系统,包括:获取海洋观测数据;提取所获取的海洋观测数据的数据特征;对所提取的数据特征进行多粒度对比学习,得到海洋观测数据的不同粒度时间序列数据的特征向量;根据所得到的时间序列数据特征向量,完成船舷风速的校正预测。本发明利用超声波风速数据来校正左右船舷风速,通过构建正负样本对,自动从海洋观测时间序列中提取不同粒度的表征向量,而无需手动调整参数或依赖领域专业知识;具备自动学习数据内在结构和模式的能力,提高对左右船舷风速数据误差的感知,增强校正能力。
-
公开(公告)号:CN116681960A
公开(公告)日:2023-09-01
申请号:CN202310551874.5
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于K8s的中尺度涡旋智能识别方法及系统,涉及涡旋识别领域。包括将待识别图像输入到基于深度学习的中尺度涡旋识别模型中,对待识别图像进行特征提取,基于CBAM混合注意力机制进行加权;将输出特征图输入至ASPP中,设置膨胀卷积的膨胀率,同时将ASPP中池化分支替换为深度可分离卷积,得到编码器输出的特征图;将编码器输出的特征图输入解码器中,基于SKNet注意力机制计算不同尺寸感受野的权重,实现中尺度涡旋的智能识别。本发明能够准确的识别出海表面高度图像中的气旋式涡旋和反气旋式涡旋,而且还通过引入注意力机制技术使模型更加精确的分割出涡旋的边界信息,有效的解决了之前方法中的中尺度涡旋识别效果泛化性差的问题。
-
公开(公告)号:CN114385126B
公开(公告)日:2022-06-21
申请号:CN202210291793.1
申请日:2022-03-24
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明属于资源调度技术领域,提供了一种基于K8s的多租户深度学习模型研发系统及方法,基于Docker、K8s等主流技术,针对不同租户的深度学习模型研发需求,通过微服务总线、微服务控制器和资源服务组件等统一数据、接口、资源标准,建立基于K8s的隔离空间,实现数据存储、模型设计、模型训练、模型评估、模型发布的自动化容器集群环境搭建和参数配置,支持资源管理、用户管理、权限管理、项目管理、数据管理、模型管理等操作,帮助用户快速高效地进行深度学习模型研发,解决了资源监控、自定义模型构建等方面不完善的问题,极大地提高AI应用开发的效率和资源利用率,满足多种业务场景的需求。
-
公开(公告)号:CN114360637A
公开(公告)日:2022-04-15
申请号:CN202210022369.7
申请日:2022-01-10
Applicant: 山东省计算中心(国家超级计算济南中心) , 中国海洋大学
Abstract: 本发明公开了一种基于图注意力网络的蛋白质‑配体亲和力评价方法。为了解决数据集规模小的问题,本发明模拟半柔性对接过程,设计了基于分子柔性的数据增强方法(Data Enhancement Method based on molecular flexibility),扩大数据规模、提高模型质量、保证了方法的科学性与合理性。本发明设计基于图注意力机制的分子特征提取方法,提取分子有效特征,提高打分函数的精度和性能。
-
公开(公告)号:CN104239058A
公开(公告)日:2014-12-24
申请号:CN201410483420.X
申请日:2014-09-22
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F9/44
Abstract: 本面向复用的软件需求建模及演化方法,包括:(1)首先,领域需求模型树DR-T初始化;(2)采采用wiki方式进行领域需求获取,将采用自然语言描述的领域需求通过wiki系统收集起来。(3)确定共性需求,构建领域需求模型。(4)新建应用App[m]的应用需求模型AR-T[m]初始化。(5)向AR-T[m]添加差异需求节点,形成完整的App[m]应用需求模型。(6)应用需求模型AR-T[m]向领域需求模型DR-T的演化。(7)领域需求模型DR-T中共性需求演化为非共性需求。软件企业通过采用该面向复用的软件需求建模及演化方法,可以逐步构建某个业务领域的需求模型,形成软件企业重要的无形资产。当该领域中有新的软件需要构建时,可以复用领域需求模型中的规约,快速形成需求规格说明以及需求模型。
-
公开(公告)号:CN118982074B
公开(公告)日:2025-04-11
申请号:CN202411463393.X
申请日:2024-10-21
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明提出一种基于高效微调和联邦学习的行业大模型训练方法及系统,涉及联邦学习领域。该方法由中心端执行,包括:获取原始全局模型,初始化可调低秩矩阵;所述可调低秩矩阵用于根据客户端资源量进行秩缩放;将模型结构和可调低秩矩阵发送给各客户端,以使各客户端基于本地数据对可调低秩矩阵进行微调训练,得到更新的可调低秩矩阵,并发送至中心端;将更新的可调低秩矩阵进行聚合,更新原始全局模型的权重文件,得到优化的全局模型。本发明客户端在微调训练时对预训练权重进行量化,并对具有秩缩放功能的可调低秩矩阵进行微调训练,以提取客户端本地数据有效特征,实现了模型参数的灵活调整与资源的高效利用。
-
公开(公告)号:CN116681960B
公开(公告)日:2024-11-15
申请号:CN202310551874.5
申请日:2023-05-15
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V10/77 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明提出一种基于K8s的中尺度涡旋智能识别方法及系统,涉及涡旋识别领域。包括将待识别图像输入到基于深度学习的中尺度涡旋识别模型中,对待识别图像进行特征提取,基于CBAM混合注意力机制进行加权;将输出特征图输入至ASPP中,设置膨胀卷积的膨胀率,同时将ASPP中池化分支替换为深度可分离卷积,得到编码器输出的特征图;将编码器输出的特征图输入解码器中,基于SKNet注意力机制计算不同尺寸感受野的权重,实现中尺度涡旋的智能识别。本发明能够准确的识别出海表面高度图像中的气旋式涡旋和反气旋式涡旋,而且还通过引入注意力机制技术使模型更加精确的分割出涡旋的边界信息,有效的解决了之前方法中的中尺度涡旋识别效果泛化性差的问题。
-
-
-
-
-
-
-
-
-