基于糖类小分子的块体炭/石墨材料的制备方法

    公开(公告)号:CN115849362B

    公开(公告)日:2024-09-27

    申请号:CN202211477635.1

    申请日:2022-11-23

    Abstract: 基于糖类小分子的块体炭/石墨材料的制备方法,涉及石墨材料制备技术领域。本发明的目的是为了降低碳材料制备领域对石油煤矿等不可再生资源的依赖的问题。本发明首先通过反应釜以溶剂热的方式提升了粉体原料的塑变性能,促进了成型阶段颗粒的挤压与变形,使原料本身在保持稳定的情况下,保留有相当程度的烧结性;其次,在成型过程中引入了温度场,促进原料分子的热运动,有利于塑性变形的发生,实现预烧结的同时缓解内部应力,避免了后续炭化过程的开裂,解决了所得自烧结性碳源粉体烧结过程中的开裂问题,成品率高,且具备大尺寸制品的生产潜力。本发明可获得基于糖类小分子的块体炭/石墨材料的制备方法。

    一种SiC纳米粉体的制备方法

    公开(公告)号:CN115259160B

    公开(公告)日:2024-05-03

    申请号:CN202210861950.8

    申请日:2022-07-20

    Abstract: 一种SiC纳米粉体的制备方法,本发明属于纳米材料合成技术领域,具体涉及一种SiC纳米粉体的制备方法。本发明是为了解决目前制备SiC纳米粉体过程较为复杂、成本高、产物粉体分散性差以及污染严重等问题。本发明的主要制备过程包括:一、制备SiO2@糖碳壳层纳米复合粉体;二、制备SiC纳米粉体初产物;三、产物除杂。本发明具有制备工艺简单、成本低、产物粉体分散性好、对环境污染小等优点,并且可以制得粒径均匀、形貌近球形的β‑SiC纳米粉体。本发明用于大规模生产SiC纳米粉体。

    一种利用糖类物质中的碳宏量获取高质量石墨烯的方法

    公开(公告)号:CN116873908A

    公开(公告)日:2023-10-13

    申请号:CN202311004561.4

    申请日:2023-08-10

    Abstract: 一种利用糖类物质中的碳宏量获取高质量石墨烯的方法,它涉及一种制备高质量石墨烯的方法。本发明的目的是为解决以往用天然石墨作为原料采用自上而下的方法和以小分子碳源作为原料采用自下而上的方法制备石墨烯存在的制备工艺复杂,制备成本高昂,难以制备高质量的石墨烯的问题。方法:一、配制水溶性糖类镍粉悬浮液和不溶性糖类镍粉悬浮液;二、制备糖/镍复合粉体;三、放电等离子烧结处理;四、刻蚀金属镍,得到高质量石墨烯。本发明通过放电等离子烧结系统制备的石墨烯,在800℃时即可得到晶型完美、缺陷较少,石墨化度极高的石墨烯材料,低温短时制备节约了能源,符合绿色化学的要求。本发明可获得高质量石墨烯。

    一种纳米SiO2粉体-糖溶液的制备方法

    公开(公告)号:CN114632434B

    公开(公告)日:2023-01-24

    申请号:CN202210277617.2

    申请日:2022-03-21

    Abstract: 一种纳米SiO2粉体‑糖溶液的制备方法,本发明涉及纳米材料领域,具体涉及一种纳米SiO2粉体‑糖溶液的制备方法。本发明要解决目前较难或无法制备出具有高固相含量、良好分散性和稳定性的纳米SiO2粉体‑糖溶液且制备工艺繁杂的问题。本发明的制备步骤:一、配制糖混合溶液;二、调控溶液的pH值;三、配制纳米SiO2粉体‑糖溶液。本发明可制备出具有高固相含量、良好分散性和稳定性的纳米SiO2粉体‑糖溶液并且具有制备工艺简单的优点。本发明用于制备纳米SiO2粉体‑糖溶液。

    一种基于毛细作用制备密度梯度防热材料的方法

    公开(公告)号:CN109485449A

    公开(公告)日:2019-03-19

    申请号:CN201910030896.0

    申请日:2019-01-11

    Abstract: 一种基于毛细作用制备密度梯度防热材料的方法,本发明涉及密度梯度防热材料的制备方法领域。本发明要解决现有引入超高温陶瓷组分操作过程复杂且所制复合材料成本高、设备要求高的技术问题。方法:一、碳纤维编织体浸泡于含酚醛树脂的料浆中,经固化后进行热处理获得多孔C/C复合材料;二、将多孔C/C复合材料上表面浸于含超高温陶瓷组分的料浆中,经振动、超声以及干燥工艺,再进行热处理;三、重复步骤二工艺,获得表面超高温陶瓷改性的密度梯度C/C防热材料。本发明制备的复合材料兼具可调密度梯度、抗烧蚀和抗氧化性能好的特点,操作过程简单、设备要求低、安全系数高且可制备大尺寸部件。本发明制备的防热材料适用于飞行器的防热材料。

    一种在多孔坯体或粉体状碳化硅‑聚碳硅烷表面原位及非原位制备超长氮化硅纳米线的方法

    公开(公告)号:CN105752952B

    公开(公告)日:2017-08-25

    申请号:CN201610060591.0

    申请日:2016-01-28

    Abstract: 一种在多孔坯体或粉体状碳化硅‑聚碳硅烷表面原位及非原位制备超长氮化硅纳米线的方法,它涉及一种氮化硅纳米线的制备方法。本发明的目的是要解决现有制备超长氮化硅纳米材料存在反应条件较为苛刻,导致安全性低,需要催化剂,导致纯度低,设备要求高、工艺复杂、成本高的技术问题。方法:一、制备多孔坯体或粉体状碳化硅‑聚碳硅烷;二、热处理,即完成在多孔坯体或粉体状碳化硅‑聚碳硅烷表面原位及瓷方舟四壁非原位制备超长氮化硅纳米线的方法。优点:一、于常压下就可以制备出长达数毫米甚至是厘米级级别的超长氮化硅纳米线,且超长氮化硅纳米线呈现直线状;二、操作过程较为简单、安全系数高。本发明主要用于制备超长氮化硅纳米线。

    有机无机杂化制备碳化硅纳米线的方法

    公开(公告)号:CN104495849A

    公开(公告)日:2015-04-08

    申请号:CN201410675593.1

    申请日:2014-11-21

    Abstract: 有机无机杂化制备碳化硅纳米线的方法,它涉及一种以有机酚醛树脂和无机硅粉体为原料制备超长碳化硅纳米线的方法。本发明为了解决现有方法制备超长SiC纳米线设备要求高、成本高、安全性低、操作过程复杂的技术问题。本方法如下:称取原料;将原料机械混合,然后装入瓷方舟中,将瓷方舟推至管式炉中央,在氩气保护、常压条件下保温,降温,即得。本发明主要是有机酚醛树脂粉体和无机硅粉体为原料,采用简单的制备方法在常压条件下就制备出了长达数毫米甚至是厘米的超长碳化硅纳米线。成本低、安全系数高、操作简单。该纳米线可以应用于纳米电子元器件、激光器、场发射和光催化等领域。本发明属于纳米线的制备领域。

    一种SiC纯度的测定方法
    8.
    发明公开

    公开(公告)号:CN116660088A

    公开(公告)日:2023-08-29

    申请号:CN202310615211.5

    申请日:2023-05-29

    Abstract: 一种SiC纯度的测定方法,属于材料测定领域,具体涉及一种SiC纯度的测定方法。本发明是为了解决目前SiC纯度测定时检测精度较低、难以测定粒径较小的SiC粉体的问题。本发明步骤包括:一、可溶杂质测定;二、碳杂质测定;三、其他杂质测定;四、纯度计算。本发明具有检测精度高、样品形貌不限等优点,可以检测样品中可能存在的所有杂质。本发明用于检测SiC纯度。

    一种块状碳/硅氧碳复合气凝胶的制备方法

    公开(公告)号:CN115057705A

    公开(公告)日:2022-09-16

    申请号:CN202210606669.X

    申请日:2022-05-31

    Abstract: 一种块状碳/硅氧碳复合气凝胶的制备方法,本发明涉及气凝胶材料制备技术领域,具体涉及一种块状碳/硅氧碳复合气凝胶的制备方法。本发明要解决目前制备碳/硅氧碳复合气凝胶存在的制备过程复杂、成本较高和难以规模化生产的技术问题。本发明的制备过程包括:一、配制溶胶;二、凝胶和固化;三、溶剂置换;四、常压干燥;五、高温热处理。本发明采用一步法常压干燥进行制备,具有操作简单、成本低、周期短和安全可靠等优势,有望实现规模化生产。本发明适用于制备块状碳/硅氧碳复合气凝胶材料。

    一种SiO2@C纳米复合粉体的制备方法

    公开(公告)号:CN114644341A

    公开(公告)日:2022-06-21

    申请号:CN202210276433.4

    申请日:2022-03-21

    Abstract: 一种SiO2@C纳米复合粉体的制备方法,本发明涉及碳包覆纳米材料合成技术领域,具体涉及一种SiO2@C纳米复合粉体的制备方法。本发明要解决现有制备SiO2@C纳米复合粉体时制备工艺复杂、成本高、污染环境、产物分散性差、碳壳层厚度难以调控的问题。制备步骤:一、配制反应溶液;二、制备SiO2@糖碳壳层纳米复合粉体;三、制备SiO2@C纳米复合粉体。本发明具有制备工艺简单、成本低、绿色环保、产物分散性好等优点,并且纳米复合粉体表面碳壳层的厚度可以根据使用需求进行调控。本发明可用于大规模生产SiO2@C纳米复合粉体。

Patent Agency Ranking