-
公开(公告)号:CN115849362B
公开(公告)日:2024-09-27
申请号:CN202211477635.1
申请日:2022-11-23
Applicant: 哈尔滨工业大学
IPC: C01B32/205 , C01B32/05
Abstract: 基于糖类小分子的块体炭/石墨材料的制备方法,涉及石墨材料制备技术领域。本发明的目的是为了降低碳材料制备领域对石油煤矿等不可再生资源的依赖的问题。本发明首先通过反应釜以溶剂热的方式提升了粉体原料的塑变性能,促进了成型阶段颗粒的挤压与变形,使原料本身在保持稳定的情况下,保留有相当程度的烧结性;其次,在成型过程中引入了温度场,促进原料分子的热运动,有利于塑性变形的发生,实现预烧结的同时缓解内部应力,避免了后续炭化过程的开裂,解决了所得自烧结性碳源粉体烧结过程中的开裂问题,成品率高,且具备大尺寸制品的生产潜力。本发明可获得基于糖类小分子的块体炭/石墨材料的制备方法。
-
公开(公告)号:CN116873908A
公开(公告)日:2023-10-13
申请号:CN202311004561.4
申请日:2023-08-10
Applicant: 哈尔滨工业大学
IPC: C01B32/184
Abstract: 一种利用糖类物质中的碳宏量获取高质量石墨烯的方法,它涉及一种制备高质量石墨烯的方法。本发明的目的是为解决以往用天然石墨作为原料采用自上而下的方法和以小分子碳源作为原料采用自下而上的方法制备石墨烯存在的制备工艺复杂,制备成本高昂,难以制备高质量的石墨烯的问题。方法:一、配制水溶性糖类镍粉悬浮液和不溶性糖类镍粉悬浮液;二、制备糖/镍复合粉体;三、放电等离子烧结处理;四、刻蚀金属镍,得到高质量石墨烯。本发明通过放电等离子烧结系统制备的石墨烯,在800℃时即可得到晶型完美、缺陷较少,石墨化度极高的石墨烯材料,低温短时制备节约了能源,符合绿色化学的要求。本发明可获得高质量石墨烯。
-
公开(公告)号:CN118545983A
公开(公告)日:2024-08-27
申请号:CN202311275005.0
申请日:2023-09-28
Applicant: 哈尔滨工业大学
IPC: C04B35/10 , C04B35/622 , C04B35/632 , C04B35/63
Abstract: 一种原位合成ZrC强化ZTA复相陶瓷的方法,它涉及一种合成复相陶瓷的方法。本发明的目的是要解决现有利用第三相颗粒增强ZTA陶瓷以固相碳化物颗粒的形式引入,很难分散均匀,无法获得高硬度、高强度、高韧性、高耐磨性能的ZTA复相陶瓷的问题。方法:一、配制浆料;二、喷雾干燥;三、压制成型;四、烧结,得到ZrC强化ZTA复相陶瓷。本发明制备的ZrC强化ZTA复相陶瓷的密度可调,即实现密度可调也实现成本可控;该复相陶瓷在传统氧化锆增韧基础上,利用多元协同强化机理,原位合成碳化锆,利用碳化锆的高硬度以及碳化锆颗粒的弥散增韧进一步增韧增强锆铝复相陶瓷,使其硬度和韧性比常规的ZTA硬度更高,耐磨性更好。
-
公开(公告)号:CN115849362A
公开(公告)日:2023-03-28
申请号:CN202211477635.1
申请日:2022-11-23
Applicant: 哈尔滨工业大学
IPC: C01B32/205 , C01B32/05
Abstract: 基于糖类小分子的块体炭/石墨材料的制备方法,涉及石墨材料制备技术领域。本发明的目的是为了降低碳材料制备领域对石油煤矿等不可再生资源的依赖的问题。本发明首先通过反应釜以溶剂热的方式提升了粉体原料的塑变性能,促进了成型阶段颗粒的挤压与变形,使原料本身在保持稳定的情况下,保留有相当程度的烧结性;其次,在成型过程中引入了温度场,促进原料分子的热运动,有利于塑性变形的发生,实现预烧结的同时缓解内部应力,避免了后续炭化过程的开裂,解决了所得自烧结性碳源粉体烧结过程中的开裂问题,成品率高,且具备大尺寸制品的生产潜力。本发明可获得基于糖类小分子的块体炭/石墨材料的制备方法。
-
公开(公告)号:CN105502315A
公开(公告)日:2016-04-20
申请号:CN201610060579.X
申请日:2016-01-28
Applicant: 哈尔滨工业大学
IPC: C01B21/068 , B82Y40/00
CPC classification number: C01B21/0685 , C01P2002/10 , C01P2002/72 , C01P2004/03
Abstract: 一种原位-非原位同时生长超长氮化硅纳米材料的方法,涉及一种氮化硅纳米材料的制备方法。本发明是为了解决目前超长氮化硅纳米材料的制备方法需要催化剂,导致产物纯度不高,影响纳米线的高温性能及后续应用、反应条件较为苛刻,如加压、通入易燃性气体等,导致操作安全性较低,对设备要求较高的技术问题。本发明:一、制备预制粉体;二、煅烧。本发明操作过程较为简单、设备要求低、安全系数高等。本发明应用于制备超长氮化硅纳米材料。
-
公开(公告)号:CN117862619A
公开(公告)日:2024-04-12
申请号:CN202410203328.7
申请日:2024-02-23
Applicant: 哈尔滨工业大学
Abstract: 一种基于强迫发汗技术的C/C复合材料主动冷却系统的制备方法,本发明是要解决无机非金属基主动冷却结构可靠性和冷却效率较低等问题。制备方法:一、采用致密化工艺使C/C复合材料高度致密化;二、将致密化C/C复合材料固定于电火花高速穿孔机的工作台上;三、利用脉冲电源放电产生的高能量在C/C复合材料上加工出微通道;四、加工微通道阵列;五、装配C/C复合材料主动冷却工件与金属主动冷却模具;六、通过泵送装置将冷却工质填充到C/C复合材料主动冷却组件中。本发明中采用先致密化再构筑冷却微通道的方式,能够在保障材料力学性能的同时,对微结构的尺寸和分布进行量化设计与按需构筑,拓宽了冷却工质种类,显著提升防热效率。
-
公开(公告)号:CN116873920A
公开(公告)日:2023-10-13
申请号:CN202311004557.8
申请日:2023-08-10
Applicant: 哈尔滨工业大学
IPC: C01B32/205
Abstract: 一种采用小分子碳水化合物制备连续石墨薄膜的方法,它属于碳材料制备领域,具体涉及一种采用小分子碳水化合物制备连续石墨薄膜的方法。本发明的目的是为了解决连续石墨薄膜制备难度大,生产成本高及环境污染大的问题。本发明采用小分子碳水化合物作为碳源,羧甲基纤维素钠作为增稠剂,丙烯酸和N,N’‑亚甲基双丙烯酰胺作为凝胶体系,去离子水作为凝胶体系的溶剂,采用流延法在聚酰亚胺薄膜和PET薄膜之间制备连续水凝胶薄膜,经预碳化、碳化、石墨化后获得连续石墨薄膜。本发明开创了采用小分子碳水化合物制备连续石墨薄膜的先河,打破了聚合物如聚酰亚胺制备连续石墨薄膜的限制,制得的连续石墨膜结晶质量较高,缺陷较少。
-
公开(公告)号:CN116873919A
公开(公告)日:2023-10-13
申请号:CN202311004550.6
申请日:2023-08-10
Applicant: 哈尔滨工业大学
IPC: C01B32/205
Abstract: 一种利用小分子糖类物质制备高取向度石墨薄膜的方法,本发明属于碳材料制备领域。本发明的目的是为了解决高取向度石墨薄膜生产难度大,生产成本高且易造成环境污染的问题。方法:一、配置糖类前驱体溶液;二、旋涂成膜;三、凝胶化;四、预碳化和碳化;五、石墨化。本发明开创了糖类物质制备高取向度石墨薄膜的先例,制备的高取向度石墨薄膜纯度极高,结晶性良好,石墨化度高,取向结构明显,具有较高的实际应用和科研价值。本发明制备的高取向度石墨薄膜具有较为优异的电磁屏蔽性能,制得的650nm厚的高取向度石墨薄膜在X波段具有超过50dB的电磁屏蔽性能。
-
公开(公告)号:CN113895106A
公开(公告)日:2022-01-07
申请号:CN202111279734.4
申请日:2021-10-29
Applicant: 航天特种材料及工艺技术研究所 , 哈尔滨工业大学
IPC: B32B9/00 , B32B3/08 , B32B9/04 , B32B5/06 , B32B33/00 , B32B38/08 , B32B38/16 , B32B38/00 , B32B37/06 , B64C1/40
Abstract: 本发明涉及一种多层夹心且局部增强的外防热材料及其制备方法和应用。所述外防热复合材料包括第一面板、第二面板、位于第一面板和第二面板之间的气凝胶芯层;所述外防热复合材料具有非增强区域和由陶瓷块形成的局部增强区域。所述制备方法包括:用于形成气凝胶芯层的芯层气凝胶复合材料的制备;用于形成陶瓷块的陶瓷块预制体的制备;面板预制体的制备;外防热复合材料预制体的浸渍成型;和外防热复合材料坯体的烧结和加工。本发明获得复合材料的密度范围为0.5至0.8g/cm3,整体复合材料压缩强度2.50MPa,其中陶瓷块的压缩强度高达35MPa,可实现低强度外防热材料的局部增强,满足飞行器局部热环境严酷部位的外防热,实现轻质防隔热复合材料的一体化成型。
-
公开(公告)号:CN108218455B
公开(公告)日:2021-01-22
申请号:CN201810030854.2
申请日:2018-01-12
Applicant: 哈尔滨工业大学
IPC: C04B35/80 , C04B35/626 , C04B35/634 , C04B35/622 , C04B35/56 , C04B35/58
Abstract: 超高温陶瓷组分高含量均匀引入三维碳纤维编织体的方法,本发明属于超高温结构材料领域,它为了解决目前将超高温陶瓷引入三维碳纤维编织体的方法中超高温陶瓷分布不均匀、组分含量较低的问题。制备方法:一、将超高温陶瓷粉体与无水乙醇以及聚丙烯酸混合,得到超高温陶瓷浆料;二、通过注浆装置将陶瓷浆料注入碳纤维编织体内部,施加超声振动,随后继续进行注浆,完成振动辅助注浆过程;三、将超高温陶瓷浆料和坯体放入反应器中,真空浸渍处理,然后进行超声振动,完成振动辅助真空浸渍过程。本发明利用振动辅助浆料注浆和真空浸渍的复合工艺,使陶瓷浆料在超声波高频振动的作用下充分且均匀分地散在碳纤维骨架中,陶瓷组分含量高,工艺周期短。
-
-
-
-
-
-
-
-
-