-
公开(公告)号:CN110705639B
公开(公告)日:2022-03-15
申请号:CN201910940562.7
申请日:2019-09-30
Applicant: 吉林大学
Abstract: 本发明属于图像识别技术领域,具体涉及一种基于深度学习的医学精子图像识别系统;包括输入模块、定位模块和分类模块,其中输入模块用于采集检测者进行灰度化处理后的精子图片;定位模块根据输入模块中采集到的精子图片,利用深度学习和图像识别方法中的YOLO v3模型对精子图片上的精子头部进行定位;分类模块采用构建的VGG‑dense block分类模型对定位模块中定位出的精子头部进行正异常判定,输出正常精子和异常精子;本系统检测精子图片用时短,大大减轻了医生的工作量,准确率高,减小主观性带来的误差,可以辅助和部分替代医生进行精子形态评估,具有良好的应用前景。
-
公开(公告)号:CN109800811B
公开(公告)日:2022-09-06
申请号:CN201910065984.4
申请日:2019-01-24
Applicant: 吉林大学
IPC: G06V10/764 , G06V10/774 , G06V10/82
Abstract: 本发明涉及一种基于深度学习的小样本图像识别方法,该方法包括下述步骤:一、划分训练集;二、生成噪声图像;三、预训练原型空间判别网络;四、训练欺骗图像生成网络;五、训练原型空间判别网络;六、重复步骤四和步骤五进行交叉迭代训练,直到达到预先设定的迭代次数或准确率不再提升;七、图像类别识别。本发明在不改变已经训练好的模型的前提下,借助每类少数几个标注样本,通过泛化这些罕见的类别,识别训练过程中有从未见过的新类,而不需要额外的训练,图像识别准确率高。
-
公开(公告)号:CN110705639A
公开(公告)日:2020-01-17
申请号:CN201910940562.7
申请日:2019-09-30
Applicant: 吉林大学
Abstract: 本发明属于图像识别技术领域,具体涉及一种基于深度学习的医学精子图像识别系统;包括输入模块、定位模块和分类模块,其中输入模块用于采集检测者进行灰度化处理后的精子图片;定位模块根据输入模块中采集到的精子图片,利用深度学习和图像识别方法中的YOLO v3模型对精子图片上的精子头部进行定位;分类模块采用构建的VGG-dense block分类模型对定位模块中定位出的精子头部进行正异常判定,输出正常精子和异常精子;本系统检测精子图片用时短,大大减轻了医生的工作量,准确率高,减小主观性带来的误差,可以辅助和部分替代医生进行精子形态评估,具有良好的应用前景。
-
公开(公告)号:CN108847285B
公开(公告)日:2021-05-28
申请号:CN201810436034.3
申请日:2018-05-09
Applicant: 吉林大学
Abstract: 本发明涉及一种基于机器学习的孕前期及孕中期唐氏综合征筛查方法,该方法包括如下步骤:选择孕妇中孕期唐氏筛查结果数据中的ns个字段作为训练特征;将Ns条样本加入数据集A;对数据集A内的样本进行预处理,使少数类集合与多数类集合中的样本数目达到均衡,获得合成数据集;将合成数据集中的样本进行处理获得胎儿是否患有唐氏综合征的预测模型,利用预测模型对测试样本进行预测得到预测结果。本发明避免了人为划分指标阈值的过程,减轻了人力资源,能够取得较高的准确率和较低的假阳性率。
-
公开(公告)号:CN109800811A
公开(公告)日:2019-05-24
申请号:CN201910065984.4
申请日:2019-01-24
Applicant: 吉林大学
IPC: G06K9/62
Abstract: 本发明涉及一种基于深度学习的小样本图像识别方法,该方法包括下述步骤:一、划分训练集;二、生成噪声图像;三、预训练原型空间判别网络;四、训练欺骗图像生成网络;五、训练原型空间判别网络;六、重复步骤四和步骤五进行交叉迭代训练,直到达到预先设定的迭代次数或准确率不再提升;七、图像类别识别。本发明在不改变已经训练好的模型的前提下,借助每类少数几个标注样本,通过泛化这些罕见的类别,识别训练过程中有从未见过的新类,而不需要额外的训练,图像识别准确率高。
-
公开(公告)号:CN108597603A
公开(公告)日:2018-09-28
申请号:CN201810416949.8
申请日:2018-05-04
Applicant: 吉林大学
Abstract: 本发明涉及一种基于多维高斯分布贝叶斯分类的癌症复发预测系统,该系统的包括预处理模块、训练模块和贝叶斯分类器;预处理模块对训练集进行数据清洗并生成类向量数据集;训练模块首先计算两个类属性先验概率,然后利用pearson相关系数将数据属性分成与类属性关联度紧密的类数据属性集合和与类属性关联度稀疏的II类数据属性集合,两类数据属性集合分别利用多维高斯分布和一维高斯分布来计算相应的概率;贝叶斯分类器将两者概率及类别的先验概率联合共同作为数据属于每个类的概率,并据此判别癌症的分类测试结果。本发明提高了癌症是否复发的预测准确率。
-
公开(公告)号:CN108597603B
公开(公告)日:2021-04-20
申请号:CN201810416949.8
申请日:2018-05-04
Applicant: 吉林大学
Abstract: 本发明涉及一种基于多维高斯分布贝叶斯分类的癌症复发预测系统,该系统的包括预处理模块、训练模块和贝叶斯分类器;预处理模块对训练集进行数据清洗并生成类向量数据集;训练模块首先计算两个类属性先验概率,然后利用pearson相关系数将数据属性分成与类属性关联度紧密的类数据属性集合和与类属性关联度稀疏的II类数据属性集合,两类数据属性集合分别利用多维高斯分布和一维高斯分布来计算相应的概率;贝叶斯分类器将两者概率及类别的先验概率联合共同作为数据属于每个类的概率,并据此判别癌症的分类测试结果。本发明提高了癌症是否复发的预测准确率。
-
公开(公告)号:CN108847285A
公开(公告)日:2018-11-20
申请号:CN201810436034.3
申请日:2018-05-09
Applicant: 吉林大学
Abstract: 本发明涉及一种基于机器学习的孕前期及孕中期唐氏综合征筛查方法,该方法包括如下步骤:选择孕妇中孕期唐氏筛查结果数据中的ns个字段作为训练特征;将Ns条样本加入数据集A;对数据集A内的样本进行预处理,使少数类集合与多数类集合中的样本数目达到均衡,获得合成数据集;将合成数据集中的样本进行处理获得胎儿是否患有唐氏综合征的预测模型,利用预测模型对测试样本进行预测得到预测结果。本发明避免了人为划分指标阈值的过程,减轻了人力资源,能够取得较高的准确率和较低的假阳性率。
-
-
-
-
-
-
-