一种基于yolov5x模型的水稻稻株高度测量方法

    公开(公告)号:CN116823916A

    公开(公告)日:2023-09-29

    申请号:CN202310555177.7

    申请日:2023-05-16

    Abstract: 本发明提供了一种基于yolov5x模型的水稻稻株高度测量方法,方法包括以下步骤:数据采集,获得水稻不同生长时期的航拍图像以及不同生长时期的高度;数据处理,对采集的航拍图像进行处理,得到包括水稻稻株高程融合图像的数据集;获取数据集中第一区域的水稻稻株的高程像素值以及对应水稻稻株的真实高度值,并建立水稻稻株的真实高度与高程像素值之间的最小二乘线性回归模型;利用YOLOv5x模型对数据集中的第二区域的位置进行识别,获取识别位置的融合图像的高程像素值;将获取的高程像素值代入建立的最小二乘线性回归模型,得到识别位置的水稻稻株高度。该方法能够快速准确检测水稻稻株的高度,为研究判断水稻的生长情况提供有力支持。

    一种茶叶干燥过程中的水分含量预测方法及处理终端

    公开(公告)号:CN115855860A

    公开(公告)日:2023-03-28

    申请号:CN202211378130.X

    申请日:2022-11-04

    Abstract: 本发明公开了一种茶叶干燥过程中的水分含量预测方法及处理终端,该方法包括:构建单批次机器学习训练的数据集;将训练数据集划分为校正集和预测集,通过新增不同批次样本数据集归并到原数据集形成新的数据集进行训练以更新模型参数,以评价函数作为目标函数来挑选最优的模型参数;将CARS‑I CA算法进一步集成到PLSR回归模型中,通过PLSR回归模型预测得到各批次茶叶水分含量。本发明提出一种茶叶干燥过程中的水分含量预测方法及处理终端,大大扩展了技术应用场景,不再是以往根据茶叶生长的气候和环境变化而每年重建模型以及调整参数,而是通过特征光谱选择校正变量参数和新增多批次样本量以建立增量型的训练数据集,利用该数据集来优化模型参数实施预测。

Patent Agency Ranking