-
公开(公告)号:CN110631580B
公开(公告)日:2021-10-01
申请号:CN201910780325.9
申请日:2019-08-22
Applicant: 北京航天控制仪器研究所
Abstract: 本发明公开了一种基于原子自旋陀螺仪的单轴惯性平台系统,包括:基座、台体、陀螺仪组合和控制器;其中,所述陀螺仪组合设置于所述台体的上部;所述基座通过轴与所述台体相连接,轴的一端与轴端力矩电机相连接,轴的另一端设置有轴端角度传感器;所述陀螺仪组合包括1个速率陀螺仪和1个原子自旋陀螺仪,该平台的陀螺仪组合采用1个速率陀螺仪和1个两自由度原子自旋陀螺仪,其中速率陀螺仪用来控制平台台体轴稳定,原子自旋陀螺仪用来控制台体另外两个轴的角速率;本发明采用平台与捷联相结合的混合式工作方式,可满足载体的全姿态运动和高精度的使用要求。
-
公开(公告)号:CN109737945A
公开(公告)日:2019-05-10
申请号:CN201910094885.9
申请日:2019-01-31
Applicant: 北京航天控制仪器研究所
IPC: G01C19/58
Abstract: 本发明涉及一种用于SERF陀螺仪双波片耦合探测光调制检测系统及方法。SERF陀螺仪信号检测通常为对经过碱金属气室线偏振光光旋角的检测。在使用电光调制器实现光旋角信号调制检测过程中,需要对电光调制器和λ/4波片装配角度精确的满足一定要求。本发明通过设计正交双λ/4波片耦合电光调制器光路,实现对探测光光旋角的调制检测,保证光旋角检测信号的信噪比。解决了调制光路中电光调制器和λ/4波片装配方位角精确控制以及探测光解调信号零位工作点调整的问题。
-
公开(公告)号:CN108613670A
公开(公告)日:2018-10-02
申请号:CN201810268246.5
申请日:2018-03-29
Applicant: 北京航天控制仪器研究所
IPC: G01C19/64
Abstract: 本发明涉及一种用于原子自旋陀螺的探测激光稳频方法。该发明所述的装置由光学系统和电路系统两部分构成,两部分通过电线连接。光学系统包含温度传感器、加热片、原子气室和光电探测器,电路系统包含温控系统和信号处理系统。该发明克服了原有原子自旋陀螺探测激光无法利用原子气室中碱金属吸收峰稳频的缺点,易于实现。
-
公开(公告)号:CN105430770B
公开(公告)日:2018-08-21
申请号:CN201510726071.4
申请日:2015-10-30
Applicant: 北京航天控制仪器研究所
Abstract: 一种用于微型核磁共振陀螺仪的多层无磁加热装置,该装置包括加热体、加热片层、绝热压板、温度传感器和待加热原子气室;加热体使用无磁高导热材料,并采用中空结构,可将原子气室放入加热体内部均匀加热;加热片层采用四层柔性薄膜型电加热片叠加而成,经过特殊的布线设计及对称反向的电流走向以实现极低的加热磁场;绝热压板采用聚四氟乙烯材料,具有良好的隔热保温作用,防止热量扩散;温度传感器利用导热硅胶粘合在加热体内部,实现对温度的实时监控。本发明与现有技术相比结构紧凑,体积小,易于装配,易实现工程化,加热均匀性好,加热效率高,加热磁场抵消能力强。
-
公开(公告)号:CN105256286B
公开(公告)日:2017-09-22
申请号:CN201510701368.5
申请日:2015-10-26
Applicant: 北京航天控制仪器研究所
IPC: C23C16/30
Abstract: 本发明提供一种减缓原子自旋弛豫的原子气室内壁镀膜方法,该方法首先采用将铷原子蒸汽充入原子气室内,再通过氢化物固态释气剂(如氢化钛、氢化钙等)向原子气室内释放压强为10Torr~100Torr的氢气,并在温度50℃~150℃下保持数十~数百小时,原子气室内壁会附着一层氢化铷薄膜,最后将气室内残存的氢气抽空,结束镀膜过程,本发明在上述镀膜过程中采用固态释气剂产生氢气,与传统采用高压氢气瓶作为氢源相比,提高了在原子气室内壁进行氢化铷镀膜的工艺安全性,并且氢化铷镀膜后将气室内残余氢气抽空,与将氢气直接密封在气室内相比,有利于提升原子气室性能的稳定性。
-
公开(公告)号:CN111060088B
公开(公告)日:2022-02-01
申请号:CN201911277266.X
申请日:2019-12-12
Applicant: 北京航天控制仪器研究所
IPC: G01C19/58
Abstract: 一种高压原子气室制造系统及方法,包括:真空控制系统、气室分装器、原子气室及连接细管、填充气体系统、碱金属反应系统、承压容器、高能激光器。其中承压容器可以控制原子气室外部的气体压强,使外部压强始终高于气室内部,以实现气室的负压熔封;其中,高能激光器采用二氧化碳激光器,可实现对原子气室的非接触高效率熔封。采用本装置制备的高压原子气室压强更高且可控(数个至十几个大气压)稳定,气室内组分可精确控制,为高压原子气室获得更优性能奠定基础。
-
公开(公告)号:CN110631580A
公开(公告)日:2019-12-31
申请号:CN201910780325.9
申请日:2019-08-22
Applicant: 北京航天控制仪器研究所
Abstract: 本发明公开了一种基于原子自旋陀螺仪的单轴惯性平台系统,包括:基座、台体、陀螺仪组合和控制器;其中,所述陀螺仪组合设置于所述台体的上部;所述基座通过轴与所述台体相连接,轴的一端与轴端力矩电机相连接,轴的另一端设置有轴端角度传感器;所述陀螺仪组合包括1个速率陀螺仪和1个原子自旋陀螺仪,该平台的陀螺仪组合采用1个速率陀螺仪和1个两自由度原子自旋陀螺仪,其中速率陀螺仪用来控制平台台体轴稳定,原子自旋陀螺仪用来控制台体另外两个轴的角速率;本发明采用平台与捷联相结合的混合式工作方式,可满足载体的全姿态运动和高精度的使用要求。
-
公开(公告)号:CN109916387A
公开(公告)日:2019-06-21
申请号:CN201910094876.X
申请日:2019-01-31
Applicant: 北京航天控制仪器研究所
IPC: G01C19/58
Abstract: 本发明涉及一种用于SERF原子气室的无磁温控系统及方法。系统包括无磁加热片、加热体、原子气室以及基于数字PID控制的加热系统。将原子气室放置于加热体内并和加热体紧密接触,将无磁加热片通过导热硅胶贴覆于加热体表面,通过无磁加热片的电阻变化作为反馈信号反馈至基于数字PID控制的加热系统实现对原子气室的温度控制。通过对无磁加热片电阻变化进行检测,实现对加热系统温度均匀分布的稳定控制。该温度控制方法提供了一个新的温度测量与控制方法,无需引入额外的热电耦器件测温,消除气室温度测量不准确,温度分布不均匀以及测量电流的磁场效应等问题。使温度控制系统对气室温度控制更加准确。
-
公开(公告)号:CN105403211B
公开(公告)日:2018-03-09
申请号:CN201510726106.4
申请日:2015-10-30
Applicant: 北京航天控制仪器研究所
IPC: G01C19/62
Abstract: 一种三种工作介质的核磁共振陀螺仪闭环控制系统,其中:核磁共振陀螺仪装置中有填充有碱金属气体和三种工作介质的气室,三种工作介质做Larmor进动;信号分离器和频率比较器得到三种工作介质的Larmor进动频率值ωa1、ωa2、ωa3;运算器计算装置内温度T、静磁场大小B0和系统角速度ωR;温度控制器根据T的反馈信号控制加热片保持核磁共振陀螺仪装置的温度T;磁场控制器根据B0的反馈信号控制静磁场线圈核磁共振陀螺仪装置中的静磁场B0;信号发生器和加法器根据三种工作介质的Larmor进动频率值ωa1、ωa2、ωa3控制驱动磁场线圈电流大小使三种工作介质保持在共振频率点。本发明同时对静磁场和温度进行闭环控制,得到更高的系统角速度的精度。
-
公开(公告)号:CN105306013B
公开(公告)日:2018-03-09
申请号:CN201510595795.X
申请日:2015-09-17
Applicant: 北京航天控制仪器研究所
IPC: H03K3/02
Abstract: 本发明涉及一种用于温度控制的高精度分段脉冲发生方法。通过将二进制PWM长脉冲分解为多个短脉冲,以达到分段加热的目的,可避免加热时间过于集中,导致温度波动变化较大,损坏加热片,如图1所示。由于分段后的脉冲较短,相比于分解前脉冲,温度控制精度会下降,为了解决这个问题,本发明将多个短脉冲计数并进行闭环反馈,将分解后的低位相位信息均匀的加到每个短脉冲上,实现一种高精度、均匀加热脉冲发生电路。
-
-
-
-
-
-
-
-
-