一种基于强化学习的航天器集群分布式容错控制方法

    公开(公告)号:CN118884845A

    公开(公告)日:2024-11-01

    申请号:CN202411395285.3

    申请日:2024-10-08

    Abstract: 本发明公开了一种基于强化学习的航天器集群分布式容错控制方法,涉及航天器控制技术领域。通过固定时间分布式估计器,保证集群内跟随者能在固定时间内获得领航者的位置与速度信息。并通过固定时间分布式估计器和反步控制方法设计近似最优虚拟控制量与近似可用控制量。在此基础上,引入径向基函数与参与者—评价者网络来处理近似最优虚拟控制量与近似可用控制量中的未知非线性项与哈密顿—雅可比—贝尔曼方程。最后通过执行机构故障处理环节优化近似可用控制量,保证航天器集群能在执行机构故障的影响下完成预定编队任务。

    一种基于固定时间观测器的航天器安全机动控制方法

    公开(公告)号:CN117872895A

    公开(公告)日:2024-04-12

    申请号:CN202410055377.0

    申请日:2024-01-15

    Abstract: 本发明公开的一种基于固定时间观测器的航天器安全机动控制方法,属于航天器控制技术领域。本发明实现方法为:建立刚性航天器姿态系统的运动模型及姿态禁区模型。利用观测器进行执行机构故障信息重构,基于重构的执行机构故障信息设计鲁棒CLF约束与鲁棒CBF约束,在此基础上建立二次规划问题平衡控制成本和性能,设计鲁棒CLF‑CBF QP控制器。构建固定时间的状态扩张观测器,实现对外界不确定干扰的观测。根据固定时间的状态扩张观测器,设计基于固定时间观测器的CLF‑CBF QP鲁棒安全姿态控制器。通过CLF‑CBF QP鲁棒安全姿态控制器确保航天器即使在执行机构发生故障的情况下仍然能够及时规避禁止指向区域,并在固定时间内实现姿态稳定。

    一种应用于高密度环境下的航天器集群轨迹规划方法

    公开(公告)号:CN117369499A

    公开(公告)日:2024-01-09

    申请号:CN202311410845.3

    申请日:2023-10-28

    Abstract: 本发明公开了一种应用于高密度环境下的航天器集群轨迹规划方法,该方法通过序列凸优化算法对航天器进行轨迹规划,并基于可达集与航天器自身的几何形状作避碰约束,能有效解决多航天器集群轨迹规划中间时刻的避碰问题,并减小碰撞约束的保守性,同时此种方法减小了轨迹规划的燃料消耗。本发明能够解决传统方法使用最小安全允许距离降低中间时刻的避碰概率存在的不足。利用可达集精确计算航天器在未来时刻的位置,因此航天器集群在轨迹规划时,与邻居航天器的规划距离可以更近,且不发生碰撞,从而提高了轨迹规划的成功率,减小燃料消耗,且计算时间没有显著增长。

    一种基于模型预测控制的无人机轨迹跟踪避障方法

    公开(公告)号:CN114721412A

    公开(公告)日:2022-07-08

    申请号:CN202210263895.2

    申请日:2022-03-16

    Abstract: 本发明公开了一种基于模型预测控制的无人机轨迹跟踪避障方法,采用了MINVO基获取障碍物预测轨迹的外多面体,采用分隔平面作为在线优化变量,将无人机的预测轨迹与障碍物集分离,完成无人机位置控制。通过对避障约束的转化求解,可以直观的体现避障约束的效果,提高无人机在轨迹跟踪过程中的避障成功率。内环即姿态控制采用了一阶控制器,保证了无人机避障轨迹跟踪控制的完整性。同时考虑系统的状态约束、控制约束以及参考轨迹,通过模型预测控制对外环进行控制,并设计合理的终端成本、终端控制器和终端约束条件,构建优化模型,证明算法的可行性。

Patent Agency Ranking