-
公开(公告)号:CN117196946A
公开(公告)日:2023-12-08
申请号:CN202311134318.4
申请日:2023-09-05
Applicant: 北京信息科技大学
IPC: G06T3/40 , G01N21/84 , G06N3/0455 , G06N3/048 , G06N3/09
Abstract: 本发明公开了一种基于自监督学习的光场空间域超分辨成像方法及装置,其包括:S1,采集原始低分辨率光场子孔径图像FLR;S2,利用基于自监督学习的光场超分辨模型,对FLR同步进行空间域的超分辨重构,获得光场数据FHR*;S2的基于自监督学习的光场超分辨模型的获取方法具体包括:S21,将随机编码向量z作为多尺度网络的输入,输出高分辨率的光场子孔径图像堆栈FHR;S22,将FLR在角度域中的数据维度为U×V的光场子孔径图像进行通道叠加,得到低分辨率光场子孔径图像堆栈 S23,对FHR在空间域进行t倍下采样,得到模拟低分辨率光场子孔径图像堆栈 S24,根据FHR和 描述基于自监督学习的光场超分辨模型。本发明能够满足基于深度学习的方法对光场超分辨不需要大量数据集的需要。
-
公开(公告)号:CN114626476A
公开(公告)日:2022-06-14
申请号:CN202210279684.8
申请日:2022-03-21
Applicant: 北京信息科技大学
IPC: G06K9/62 , G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于Transformer和部件特征融合的鸟类细粒度图像识别方法及装置,该方法包括:步骤1,通过将预处理后的图像输入基于Transformer架构网络的特征编码器,提取出基础特征图,并将所述基础特征图输入注意力模块,生成部件注意力图;步骤2,将所述基础特征图和所述部件注意力图进行双线性注意力池化操作,获得判别性部件特征;步骤3,通过将判别性部件特征在通道维度上进行拼接,得到融合了判别性部件信息的增强特征表示;步骤4,通过将增强特征表示输入全连接层,完成类别的映射,并通过交叉熵损失和中心损失对模型参数进行优化。本发明能够实现在弱监督下对鸟类图像进行高精度识别。
-
公开(公告)号:CN119964238A
公开(公告)日:2025-05-09
申请号:CN202510034605.0
申请日:2025-01-09
Applicant: 北京信息科技大学
Abstract: 本发明公开了一种基于动作快慢特征的多模态鸟类动作识别方法及装置,该方法包括:计算输入视频相邻两帧图像之间的光流运动矢量;将光流运动矢量值按照区间进行划分,得到多个快慢类别;将每个快慢类别转化为一个二进制向量,得到动作快慢特征;将动作快慢特征与视觉‑文本特征相融合,共同作为模型的语义查询部分;训练模型:将语义查询部分与视频特征向量均输入解码器,解码器利用语义查询部分对解码器进行引导,使解码器能够聚焦于与语义查询部分的信息进行解码,得到动作识别结果,计算动作识别结果的平均精度均值,平均精度均值作为评价训练效果的指标。本发明能够更好地捕捉到鸟类动作中的时间动态信息,具有更高的识别准确性和鲁棒性。
-
公开(公告)号:CN114626476B
公开(公告)日:2024-12-24
申请号:CN202210279684.8
申请日:2022-03-21
Applicant: 北京信息科技大学
IPC: G06V10/764 , G06V10/774 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于Transformer和部件特征融合的鸟类细粒度图像识别方法及装置,该方法包括:步骤1,通过将预处理后的图像输入基于Transformer架构网络的特征编码器,提取出基础特征图,并将所述基础特征图输入注意力模块,生成部件注意力图;步骤2,将所述基础特征图和所述部件注意力图进行双线性注意力池化操作,获得判别性部件特征;步骤3,通过将判别性部件特征在通道维度上进行拼接,得到融合了判别性部件信息的增强特征表示;步骤4,通过将增强特征表示输入全连接层,完成类别的映射,并通过交叉熵损失和中心损失对模型参数进行优化。本发明能够实现在弱监督下对鸟类图像进行高精度识别。
-
公开(公告)号:CN119942449A
公开(公告)日:2025-05-06
申请号:CN202510023206.4
申请日:2025-01-07
Applicant: 北京信息科技大学
IPC: G06V20/52 , G06V10/52 , G06V10/80 , G06V10/764 , G06V10/82 , G06V10/766 , G06V10/774 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种网格划分与多尺度特征融合的密集小目标计数方法及装置,包括:步骤一,处理数据集;步骤二,根据近大远小原理,将输入图像划分为三个区域,在每一区域设置网格,按照不同大小的网格进行裁剪;步骤三,将图像切片进行特征提取,得到图像的多层次特征图;步骤四,将每一分支特征向其它分支特征维度对齐,通过动态生成特征融合权重,不同分支特征和对应的权重相乘再相加,输出低层分支融合特征、中间层分支融合特征和高层分支融合特征;步骤五,选择中间层分支融合特征和高层分支融合特征融合,输出预测点位置坐标和置信度分数,与真实点匹配,完成密集小目标计数。本发明能够提高远距离小目标的检测精度并优化计算效率。
-
公开(公告)号:CN118823831A
公开(公告)日:2024-10-22
申请号:CN202410923287.9
申请日:2024-07-10
Applicant: 北京信息科技大学 , 山东黄河三角洲国家级自然保护区管理委员会
IPC: G06V40/10 , G06V10/20 , G06V10/40 , G06V10/74 , G06V10/774 , G06V10/82 , G06V10/764
Abstract: 本发明公开了一种基于提示学习的鸟类细粒度识别增量学习方法和装置,包括:步骤1,搭建增量学习模型;步骤2,将预处理图像重构变为序列;步骤3,接收预处理图像,获得查询特征;步骤4,接收种级类别标签,输出对应的多粒度文本信息,转化为独热编码向量,作为文本提示向量;步骤5,构建视觉提示池,选择最终视觉提示子集;步骤6,将文本提示池和视觉提示池共同与嵌入特征拼接;步骤7,将拼接结果先后输入编码模块、分类头,输出预测分类结果,再根据预测分类结果对增量学习模型的参数进行优化,并随着增量学习模型学习不同分类任务来更新增量学习模型的参数,引导增量学习模型进行预测。本发明能够实现对鸟类图像进行高精度识别。
-
-
-
-
-