一种用于瞄准监测望远镜光轴的立方棱镜光校装置

    公开(公告)号:CN109029925B

    公开(公告)日:2023-12-26

    申请号:CN201810598176.X

    申请日:2018-06-12

    Abstract: 本发明公开了一种用于瞄准监测望远镜光轴的立方棱镜光校装置。立方棱镜光校装置采用一个立方棱镜办法折转两束激光束成180度夹角,实现了望远镜光学系统光轴与参考标准平面镜法线平行的初始调节;再采用两块平行平板的平行关系,解决了望远镜光轴与参考平面镜法线平行的高精度精密调节。本发明攻克了望远镜装调过程光轴漂移引起像质变化的难题,实现了被测试系统状态的实时高精度监控,光路结构简单,粗调与精调相结合,大大提高了光校效率。采用本发明所述的光校装置,不仅适用望远镜光学系统光轴与标准平面镜法线的配准与实时监测,还适用于标定相对的两块反射镜面的夹角、两块光学平板的夹角等其它光校领域。

    一种具备偏振态补偿功能的量子通信系统及方法

    公开(公告)号:CN113037392B

    公开(公告)日:2022-09-16

    申请号:CN202110265620.8

    申请日:2021-03-11

    Abstract: 本发明公开一种具备偏振态补偿功能的量子通信系统及方法。本发明提供了一种利用波片组同时补偿单模光纤及动态跟踪系统偏振退化的方法。该方法利用斯托克斯参量对偏振光进行表示,并使用穆勒矩阵表达量子通信系统及单模光纤对偏振态产生的扰动,通过波片组补偿后,使的整个光学链路的所有光学元件组合产生的穆勒矩阵为单位矩阵,再通过矩阵的运算得到相应的波片组补偿矩阵,计算出波片组中每个波片需要旋转的角度,完成波片组对量子通信系统偏振态扰动的动态补偿。该方法的优点在于确保了量子光之间的绝对同轴度,同时在系统光学元件发生退化后,可以更新波片补偿角度达到偏振保持的功能,从而延长系统的使用寿命。

    一种利用AOTF单色光测量宽波段波片性能的装置及方法

    公开(公告)号:CN110631805B

    公开(公告)日:2025-03-11

    申请号:CN201910850239.0

    申请日:2019-09-10

    Abstract: 本发明公开了一种利用AOTF单色光测量宽波段波片性能的装置及方法,该装置由波长可调谐单色光光源模块、起偏器、待检波片、检偏器、能量探测组件组成,待检波片位于起偏器与检偏器中间,旋转待检波片导致出射光能量变化,通过测试出光能量的变化来准确标定波片相位延迟量。本发明的方法基于偏振光在器件中传播的穆勒矩阵和斯托克斯矢量表示法,将待检波片放置于两片透光轴方向相同的检偏器与检偏器中间,通过旋转波片测试出光能量的最大值与最小值,根据斯托克斯矢量法推导得出待测波片相位延迟角与出射能量最大值、最小值的对应关系,从而通过测量出射能量来准确快速标定待测波片的相位延迟量。

    一种基于光纤环形器的双工激光通信系统及使用方法

    公开(公告)号:CN112242870A

    公开(公告)日:2021-01-19

    申请号:CN202010966326.5

    申请日:2020-09-15

    Abstract: 本发明公开了一种基于光纤环形器的双工激光通信系统及使用方法,该激光通信系统由主望远镜、粗跟踪模块、信标光激光器、跟踪反射镜、信标光与通信光分色片、精跟踪模块、激光准直模块、光纤环形器、通信光激光器和探测器组成。粗跟踪模块负责调整望远镜系统的方位,精跟踪模块控制跟踪反射镜实现跟踪,保证双端激光通信系统对准,实现双向双工的激光通信功能。该激光通信系统基于光纤环形器单向传输特点,在同一根光纤进行光的发射和接收双向传输,实现激光收发的双向通信的功能,同时保证光通信中发射和接收同轴条件,达到远距离高精度的通信。该系统适用于收发端方位相对固定的光通信领域,如地面固定点的双工激光通信。

    一种高精度测量大角度光楔楔角的装置及方法

    公开(公告)号:CN111238409A

    公开(公告)日:2020-06-05

    申请号:CN202010126547.1

    申请日:2020-02-28

    Abstract: 本发明公开了一种高精度测量大角度光楔楔角的装置和方法,该发明基于光楔会使光束产生固定的角度偏转的原理,通过测量光束偏角大小来得到大角度光楔楔角的角度偏差。该装置由准直激光光源、带旋转结构的待检光楔、平行光管、面阵CCD组件组成,准直激光光源经过光楔折射后,再经过平行光管会聚于焦面的面阵CCD上。旋转待检光楔,通过旋转角度及面阵CCD上的光斑位置变化来准确测量光楔角度。本发明装置结构简单、成本低廉、检测方法简单,适用于光楔、平行平板等光学器件的批量生产及高精度测量。

    一种用于瞄准监测望远镜光轴的立方棱镜光校装置

    公开(公告)号:CN109029925A

    公开(公告)日:2018-12-18

    申请号:CN201810598176.X

    申请日:2018-06-12

    CPC classification number: G01M11/00

    Abstract: 本发明公开了一种用于瞄准监测望远镜光轴的立方棱镜光校装置。立方棱镜光校装置采用一个立方棱镜办法折转两束激光束成180度夹角,实现了望远镜光学系统光轴与参考标准平面镜法线平行的初始调节;再采用两块平行平板的平行关系,解决了望远镜光轴与参考平面镜法线平行的高精度精密调节。本发明攻克了望远镜装调过程光轴漂移引起像质变化的难题,实现了被测试系统状态的实时高精度监控,光路结构简单,粗调与精调相结合,大大提高了光校效率。采用本发明所述的光校装置,不仅适用望远镜光学系统光轴与标准平面镜法线的配准与实时监测,还适用于标定相对的两块反射镜面的夹角、两块光学平板的夹角等其它光校领域。

    基于测角法的长焦距激光三维成像仪畸变测试装置与方法

    公开(公告)号:CN110806572B

    公开(公告)日:2024-05-07

    申请号:CN201911124504.3

    申请日:2019-11-18

    Abstract: 本发明公开了一种基于测角法的长焦距激光三维成像仪畸变测试装置与方法。照明平行光管焦面星点,经平行光管准直,光线入射到激光三维成像仪光学系统后,聚焦到成像探测器上,形成星点影像,转动测高仪支撑转台,获取一系列星点坐标与转台角度的对应关系。测试装置采用高精度的光电自准直仪监视转台转动角度,大大提高了测角精度;建立畸变数学模型,编制专用软件处理质心位置和数据处理,排除转台抖动、气流等环境因素引入误差。本发明解决了传统畸变测试装置在长焦距激光三维成像仪畸变测试中数据不稳定,从而影响畸变测试精度的问题。

    一种通过角锥棱镜和分光棱镜实现偏振退化的方法及装置

    公开(公告)号:CN114114701B

    公开(公告)日:2023-09-12

    申请号:CN202111351699.2

    申请日:2021-11-16

    Abstract: 本发明公开一种通过分光棱镜和角锥棱镜实现偏振退化的方法及装置,该发明利用角锥棱镜的内表面全反射功能,入射面六个区域进入角锥棱镜后折射和反射的路径不同,造成不同区域的偏振入射光经过角锥棱镜反射后的偏振态不同,从而导致出射光的偏振度发生退化,即出射光退化成部分偏振光;同时利用了分光棱镜的分光及合束的功能,采用两个角锥棱镜分别对透过和反射光束自准退偏,两束自准光再经过分光棱镜合束出射,组合成一个固定收发一体的偏振光束退偏模块。该发明操作过程简单,光路搭建方便,同时对入射光波长没有要求,对复色光也可实现偏振退化,所需成本低廉。

    一种快速测量平行平板平行度的装置和方法

    公开(公告)号:CN111238408A

    公开(公告)日:2020-06-05

    申请号:CN202010126544.8

    申请日:2020-02-28

    Abstract: 本发明公开了一种快速测量平行平板平行度的装置和方法,该发明基于光束经过非平行的光学平板时会产生微小的角度偏转的原理,通过测量光束偏角大小来得到平行平板的角度偏差。该装置由准直激光光源、待检平行平板、平行光管、面阵CCD组件组成,准直激光光源经过平行光管被平行光管焦面的面阵CCD接收,记录插入待检平行平板前后面阵CCD上的光斑位置及偏移方向来快速准确测量平行平板平行度及楔角方向。本发明装置结构简单、成本低廉、调节方法简单,适用于平行平板、光楔等光学器件的批量生产及测量。

    一种基于光纤环形器的双工激光通信系统及使用方法

    公开(公告)号:CN112242870B

    公开(公告)日:2022-07-29

    申请号:CN202010966326.5

    申请日:2020-09-15

    Abstract: 本发明公开了一种基于光纤环形器的双工激光通信系统及使用方法,该激光通信系统由主望远镜、粗跟踪模块、信标光激光器、跟踪反射镜、信标光与通信光分色片、精跟踪模块、激光准直模块、光纤环形器、通信光激光器和探测器组成。粗跟踪模块负责调整望远镜系统的方位,精跟踪模块控制跟踪反射镜实现跟踪,保证双端激光通信系统对准,实现双向双工的激光通信功能。该激光通信系统基于光纤环形器单向传输特点,在同一根光纤进行光的发射和接收双向传输,实现激光收发的双向通信的功能,同时保证光通信中发射和接收同轴条件,达到远距离高精度的通信。该系统适用于收发端方位相对固定的光通信领域,如地面固定点的双工激光通信。

Patent Agency Ranking