-
公开(公告)号:CN118625382A
公开(公告)日:2024-09-10
申请号:CN202411110634.2
申请日:2024-08-14
Applicant: 东北石油大学三亚海洋油气研究院
Abstract: 本发明公开了一种用于获得页岩油藏弹性参数的VTI介质数据驱动地震AVO反演方法,属于地球物理技术领域,包括以下步骤:基于Transformer网络和卷积神经网络,构建TransU‑net模型;对井旁道叠前地震数据进行叠加,获得角度叠加地震数据构成样本输入;对测井数据进行增广处理,构成样本输出;基于样本输入和样本输出构成训练样本,基于训练样本对TransU‑net模型进行训练;基于训练后的TransU‑net模型获得反演弹性参数和各向异性参数。本发明可缓解反演对低频各向异性参数和以各向异性参数为样本输出的训练样本的依赖,提高页岩油藏弹性参数反演精度。
-
公开(公告)号:CN118566979A
公开(公告)日:2024-08-30
申请号:CN202411018115.3
申请日:2024-07-29
Applicant: 东北石油大学三亚海洋油气研究院
Abstract: 本发明公开了一种用于获得地下介质弹性参数的黏弹性介质地震AVO反演方法,涉及地球物理技术领域,包括:基于褶积模型理论构建用于黏弹性介质AVO反演的GANs模型;获得地球物理数据,根据所述地球物理数据划分出训练样本数据和角度叠加地震数据;通过所述训练样本数据对所述用于黏弹性介质AVO反演的GANs模型进行训练,获得训练好的用于黏弹性介质AVO反演的GANs模型;将所述角度叠加地震数据输入所述训练好的用于黏弹性介质AVO反演的GANs模型,获得反演参数。本发明利用多目标函数控制网络模型超参数的优化,提高弹性参数反演精度。
-
公开(公告)号:CN118566979B
公开(公告)日:2024-10-18
申请号:CN202411018115.3
申请日:2024-07-29
Applicant: 东北石油大学三亚海洋油气研究院
Abstract: 本发明公开了一种用于获得地下介质弹性参数的黏弹性介质地震AVO反演方法,涉及地球物理技术领域,包括:基于褶积模型理论构建用于黏弹性介质AVO反演的GANs模型;获得地球物理数据,根据所述地球物理数据划分出训练样本数据和角度叠加地震数据;通过所述训练样本数据对所述用于黏弹性介质AVO反演的GANs模型进行训练,获得训练好的用于黏弹性介质AVO反演的GANs模型;将所述角度叠加地震数据输入所述训练好的用于黏弹性介质AVO反演的GANs模型,获得反演参数。本发明利用多目标函数控制网络模型超参数的优化,提高弹性参数反演精度。
-
公开(公告)号:CN119126214B
公开(公告)日:2025-01-10
申请号:CN202411612818.9
申请日:2024-11-13
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G01V1/28
Abstract: 本发明公开了一种纵波、转换波叠前地震数据智能匹配方法,属于勘探地球物理领域,该方法包括以下步骤:对真实纵波地震数据和真实转换波地震数据进行预处理得到标准转换波地震数据和纵波时间域的真实转换波地震数据;将所述纵波时间域的真实转换波地震数据进行分段处理得到分段转换波地震数据;构建神经网络模型,将所述分段转换波地震数据的端点时间向量输入所述神经网络模型得到调整时间后的转换波地震数据;基于所述标准转换波地震数据和调整时间后的转换波地震数据更新所述神经网络模型参数得到最终的转换波地震数据。
-
公开(公告)号:CN119126214A
公开(公告)日:2024-12-13
申请号:CN202411612818.9
申请日:2024-11-13
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G01V1/28
Abstract: 本发明公开了一种纵波、转换波叠前地震数据智能匹配方法,属于勘探地球物理领域,该方法包括以下步骤:对真实纵波地震数据和真实转换波地震数据进行预处理得到标准转换波地震数据和纵波时间域的真实转换波地震数据;将所述纵波时间域的真实转换波地震数据进行分段处理得到分段转换波地震数据;构建神经网络模型,将所述分段转换波地震数据的端点时间向量输入所述神经网络模型得到调整时间后的转换波地震数据;基于所述标准转换波地震数据和调整时间后的转换波地震数据更新所述神经网络模型参数得到最终的转换波地震数据。
-
公开(公告)号:CN118625382B
公开(公告)日:2024-11-12
申请号:CN202411110634.2
申请日:2024-08-14
Applicant: 东北石油大学三亚海洋油气研究院
Abstract: 本发明公开了一种用于获得页岩油藏弹性参数的VTI介质数据驱动地震AVO反演方法,属于地球物理技术领域,包括以下步骤:基于Transformer网络和卷积神经网络,构建TransU‑net模型;对井旁道叠前地震数据进行叠加,获得角度叠加地震数据构成样本输入;对测井数据进行增广处理,构成样本输出;基于样本输入和样本输出构成训练样本,基于训练样本对TransU‑net模型进行训练;基于训练后的TransU‑net模型获得反演弹性参数和各向异性参数。本发明可缓解反演对低频各向异性参数和以各向异性参数为样本输出的训练样本的依赖,提高页岩油藏弹性参数反演精度。
-
-
-
-
-