-
公开(公告)号:CN116721063A
公开(公告)日:2023-09-08
申请号:CN202310587791.1
申请日:2023-05-23
Applicant: 东北石油大学 , 东北石油大学三亚海洋油气研究院
IPC: G06T7/00 , G06V10/72 , G06V10/774 , G06V10/776 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/0985
Abstract: 本发明涉及的是一种基于注意力机制的MRI直肠癌淋巴结转移检测方法,它包括:获取直肠癌淋巴结转移MRI数据,建立数据集;图像增广;数据集样本标注;数据集划分;构造检测模型,以YOLOv4网络为主干网络,特征提取部分是CSPDarknet53网络、特征融合部分是SPP和PAN,预测部分为YOLOv3,通道注意力机制与SPP分别提取由CSPDarknet53提取的特征,将融合后的结果作为下一阶段的输入;再经空间注意力机制与PANet分别提取特征后融合,最终与CSPDarknet53提取的特征在特征融合部分融合;训练并验证模型。本发明能够自动检测发生转移的直肠癌淋巴结特征,并能准确而快速地检测出位置。
-
公开(公告)号:CN116645511A
公开(公告)日:2023-08-25
申请号:CN202310623026.0
申请日:2023-05-30
Applicant: 东北石油大学 , 东北石油大学三亚海洋油气研究院
IPC: G06V10/26 , G06V10/764 , G06V10/774 , G06T7/00 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种基于特征空间不变的图像语义分割模型构建方法及系统,涉及深度学习医学图像处理技术领域,以解决现有技术中人工勾画直肠癌淋巴结转移MRI结果存在主观性强和效率差等问题。本发明的技术要点包括:将收集到的MRI数据进行预处理,即先对数据集进行图像增广,然后使用标注工具LabelMe对数据集进行标注,将标注好的数据集进行划分,得到训练集、验证集和测试集,构建分割模型并对其进行训练与调整,得到训练合格的分割模型,最后将待分割的直肠癌淋巴结转移MRI影像输入到最佳模型中进行缺陷检测,得到检测结果。本发明有效提高了直肠癌淋巴结转移勾画效率和精度,进而可以辅助医生提高诊断准确率。
-
公开(公告)号:CN120028878A
公开(公告)日:2025-05-23
申请号:CN202510228317.9
申请日:2025-02-28
Applicant: 东北石油大学
IPC: G01V11/00
Abstract: 本申请公开了一种连通性定量表征方法,涉及地质构造和石油勘探技术领域,该方法包括:获取待表征区域的地质背景资料和地震数据;根据地质背景资料和地震数据确定待表征区域的地震解析数据;地震解析数据包括:构造图件数据、断裂几何学参数数据以及运动学参数数据;根据地质背景资料和地震解析数据确定砂箱物理模拟实验的砂箱模型;当砂箱物理模拟实验结束后,获取砂箱物理模拟实验的实验数据;实验数据包括:若干种水平位移情况下的背斜隆起幅度和背斜平均坡角;利用背斜隆起幅度和背斜平均坡角对背斜之间的连通性进行定量表征。本申请仅利用了地质背景资料和地震数据进行分析,成本低且分析过程客观。
-
公开(公告)号:CN118552828B
公开(公告)日:2024-11-08
申请号:CN202411002429.4
申请日:2024-07-25
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G06V10/82 , G08B17/12 , G06N3/045 , G06N3/0464 , G06N3/082 , G06V10/25 , G06V10/774 , G06V10/776
Abstract: 本发明一种基于深度学习的火灾检测方法、系统及存储介质,涉及目标检测技术领域,为解决现有的针对多变性的火灾进行目标检测存在提取特征困难、对小目标火焰的检测效果较差的问题。本发明的火灾检测网络模型包含特征提取主干网络、多尺度加权特征融合颈部网络和目标分类回归网络;特征提取主干网络引入拥有多个不同的分支的MCA注意力模块,以提取到多层次化的特征,且特征提取主干网络的前端卷积采用RepVB模块以降低模型参数量;通过多尺度加权特征融合颈部网络将骨干网络中多个阶段提取的特征加权融合进颈部网路,并且对颈部网路输出的多个特征也进行多层次化融合,再进行多个方向的权重回传以有效地融合高低维度的信息,以获取密集小目标信息。
-
公开(公告)号:CN118552828A
公开(公告)日:2024-08-27
申请号:CN202411002429.4
申请日:2024-07-25
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G06V10/82 , G08B17/12 , G06N3/045 , G06N3/0464 , G06N3/082 , G06V10/25 , G06V10/774 , G06V10/776
Abstract: 本发明一种基于深度学习的火灾检测方法、系统及存储介质,涉及目标检测技术领域,为解决现有的针对多变性的火灾进行目标检测存在提取特征困难、对小目标火焰的检测效果较差的问题。本发明的火灾检测网络模型包含特征提取主干网络、多尺度加权特征融合颈部网络和目标分类回归网络;特征提取主干网络引入拥有多个不同的分支的MCA注意力模块,以提取到多层次化的特征,且特征提取主干网络的前端卷积采用RepVB模块以降低模型参数量;通过多尺度加权特征融合颈部网络将骨干网络中多个阶段提取的特征加权融合进颈部网路,并且对颈部网路输出的多个特征也进行多层次化融合,再进行多个方向的权重回传以有效地融合高低维度的信息,以获取密集小目标信息。
-
公开(公告)号:CN116701948B
公开(公告)日:2024-01-23
申请号:CN202310968582.1
申请日:2023-08-03
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G06F18/214 , G06F18/20 , G06F18/22 , G06N3/0464 , G06N3/08 , G06N3/048
Abstract: 管道故障诊断方法及系统、存储介质和管道故障诊断设备,属于机械故障检测与诊断技术领域,用于解决现有的智能诊断模型在小样本、不平衡数据集下准确率较低的问题。技术要点:利用传感器采集管道故障数据以及正常数据,组成真实数据集;构建时序生成网络,学习真实数据时序特征和类别特征,生成更加符合工程实际的管道数据;构建判别网络,判别其输入数据是否为真实数据;根据质量与多样性指标确定时序生成网络下一模态;利用Adam优化器交替更新时序生成网络与判别网络直至收敛;将训练好的时序生成网络用于扩充管道数据集,实现石油管道故障类别识别。本发明有效克服小样本、不平衡数据集对管道故障诊断的不利影响,进而提升管道
-
公开(公告)号:CN117250657A
公开(公告)日:2023-12-19
申请号:CN202311531698.5
申请日:2023-11-17
Applicant: 东北石油大学三亚海洋油气研究院
Abstract: 本发明涉及地球科学技术与人工智能交叉技术领域,特别是涉及一种地震数据重建去噪一体化方法,包括:获取地震数据;将所述地震数据输入预设的地震数据恢复模型中,输出重建去噪后的地震数据,其中,所述数据恢复模型基于训练集训练获得,所述训练集包括理想地震数据和训练地震数据,所述数据恢复模型采用Swin Transformer生成对抗网络构建。本发明通过对生成器和判别器以及损失函数进行设计,构建数据恢复模型,能够更好的利用地震数据的全局信息与关联性等特点,解决先前的模型由于感受野有限无法引入全局信息导致恢复出的地震数据较为模糊的问题。
-
公开(公告)号:CN116701948A
公开(公告)日:2023-09-05
申请号:CN202310968582.1
申请日:2023-08-03
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G06F18/214 , G06F18/20 , G06F18/22 , G06N3/0464 , G06N3/08 , G06N3/048
Abstract: 管道故障诊断方法及系统、存储介质和管道故障诊断设备,属于机械故障检测与诊断技术领域,用于解决现有的智能诊断模型在小样本、不平衡数据集下准确率较低的问题。技术要点:利用传感器采集管道故障数据以及正常数据,组成真实数据集;构建时序生成网络,学习真实数据时序特征和类别特征,生成更加符合工程实际的管道数据;构建判别网络,判别其输入数据是否为真实数据;根据质量与多样性指标确定时序生成网络下一模态;利用Adam优化器交替更新时序生成网络与判别网络直至收敛;将训练好的时序生成网络用于扩充管道数据集,实现石油管道故障类别识别。本发明有效克服小样本、不平衡数据集对管道故障诊断的不利影响,进而提升管道故障诊断的可靠性。
-
公开(公告)号:CN116659767A
公开(公告)日:2023-08-29
申请号:CN202310394623.0
申请日:2023-04-13
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G01M3/24 , G06N3/0464 , G06N3/048 , G06F18/2411 , G06F18/213 , G06F18/214 , G06N3/006
Abstract: 本发明涉及的是改进1DCNN的油气管道信息物理融合系统泄漏检测方法,它包括通过油气管道信息物理融合系统中的声波传感器获取油气管道数据同时上传至系统云端;通过调整网络结构和参数构建一维卷积神经网络1DCNN管道泄漏检测模型;构建1DCNN‑TSNE‑SVM模型,提取1DCNN网络各层特征并进行特征融合,通过TSNE算法对其进行降维,并采用粒子群优化PSO算法优化后的支持向量机SVM分类器进行分类识别;从系统云端下载各类管道信号构建训练样本和测试样本,进行训练及测试模型,对管道异常情况实时监测。本发明可以准确地发现管道发生泄漏并及时报警,减少经济损失。
-
公开(公告)号:CN115906949B
公开(公告)日:2023-06-20
申请号:CN202211465052.7
申请日:2022-11-22
Applicant: 东北石油大学三亚海洋油气研究院
IPC: G06N3/047 , G06N3/0464 , G06N3/0442 , G06N3/094
Abstract: 一种石油管道故障诊断方法及系统、存储介质和石油管道故障诊断设备,属于管道故障诊断与分类技术领域,用以解决现有的智能方法在数据类别非均衡情况下无法达到高准确率的问题,包括步骤如下:步骤一,利用传感器采集不同泄漏程度以及正常状态的管道数据,构建真实数据集;步骤二,构建Tem‑PECAN的网络结构;步骤三,获取真实数据集的时间结构信息以及判别特征,以用于辅助Tem‑PECAN网络模型训练;步骤四:训练构建的Tem‑PECAN网络模型;步骤五,利用多样性与质量的综合评估指标验证生成数据的可靠性,并获得最优超参数组合;步骤六,利用训练好的Tem‑PECAN网络模型生成小类管道故障数据,用于扩充原始管道数据集;步骤七,使用扩充后的合成数据集训练故障分类模型,并实现管道故障诊断。本发明可以合成质量更好,多样性更强的管道时序数据,有效地提高了管道故障诊断模型的准确率以及鲁棒性,大大降低了诊断的漏报率和误报率。
-
-
-
-
-
-
-
-
-