-
公开(公告)号:CN112719693B
公开(公告)日:2022-08-30
申请号:CN202011451260.2
申请日:2020-12-11
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及一种低温磁性玻璃钎料及其制备方法和应用其连接铁氧体的方法,属于铁氧体焊接技术领域。本发明提供的玻璃钎料成分为xBi2O3‑yCoO‑yFe2O3‑20B2O3(mol.%,x=30~60,y=10~25),该玻璃钎料的物理化学性能接近铁氧体。且本申请采用熔融冷淬法制备玻璃钎料,将其涂覆在铁氧体母材表面,实现在较低温条件下磁性玻璃钎料连接铁氧体,使焊缝具有良好的力学性能和长期服役稳定性的同时,具有良好的与母材相近的磁性能。此外,本发明在连接铁氧体连接过程中热处理使得玻璃析出磁性CoFe2O4晶相,能够同时提高焊缝力学性能和磁性能,实现铁氧体的可靠连接与拓宽铁氧体的应用领域。
-
公开(公告)号:CN112537958B
公开(公告)日:2022-04-05
申请号:CN202011300233.5
申请日:2020-11-19
Applicant: 哈尔滨工业大学
IPC: H01M10/0562 , H01M10/058 , H01M10/052 , C04B35/48 , C04B35/50 , C04B35/622 , C04B35/64 , C04B35/626
Abstract: 本发明提供了一种锆酸镧锂固态电解质及其制备方法,包括如下步骤:步骤S1、分别制备锆酸镧锂粉末和锗酸锂粉末;步骤S2、在所述锆酸镧锂粉末表面包覆所述锗酸锂粉末,得到复合粉末;步骤S3、将所述复合粉末经预压成型和冷等静压处理后,得到陶瓷生坯,将所述陶瓷生坯经过液相烧结后,得到锆酸镧锂固态电解质。本发明通过减少锂离子在烧结过程中的挥发、同时降低晶界电阻和本征电阻,从而达到大幅度提升锆酸镧锂固态电解质的离子电导率的目的。
-
公开(公告)号:CN114133264A
公开(公告)日:2022-03-04
申请号:CN202111600322.6
申请日:2021-12-24
Applicant: 哈尔滨工业大学 , 中国航发沈阳黎明航空发动机有限责任公司
IPC: C04B37/02
Abstract: 本发明提供了一种碳化硅陶瓷复合材料与镍基高温合金的连接方法及接头,涉及材料焊接技术领域,所述碳化硅陶瓷复合材料与镍基高温合金的连接方法包括将CuTi膏状钎料涂覆在除杂后的碳化硅陶瓷复合材料的表面,依次经过热处理、清洗及干燥后,得到第一待焊材料;将BNix膏状钎料涂覆在除杂后的镍基高温合金表面,得到第二待焊材料;将步骤S1得到的所述第一待焊材料放置在步骤S2得到的所述第二待焊材料的上方,用模具夹紧,经热处理后,得到碳化硅陶瓷复合材料与镍基高温合金的连接接头。本发明获得的接头的室温剪切强度最大可达50MPa,高温剪切强度最大可达55MPa。
-
公开(公告)号:CN112537958A
公开(公告)日:2021-03-23
申请号:CN202011300233.5
申请日:2020-11-19
Applicant: 哈尔滨工业大学
IPC: C04B35/48 , C04B35/50 , C04B35/622 , C04B35/628 , C04B35/64 , C04B35/626 , H01M10/052 , H01M10/0562
Abstract: 本发明提供了一种锆酸镧锂固态电解质及其制备方法,包括如下步骤:步骤S1、分别制备锆酸镧锂粉末和锗酸锂粉末;步骤S2、在所述锆酸镧锂粉末表面包覆所述锗酸锂粉末,得到复合粉末;步骤S3、将所述复合粉末经预压成型和冷等静压处理后,得到陶瓷生坯,将所述陶瓷生坯经过液相烧结后,得到锆酸镧锂固态电解质。本发明通过减少锂离子在烧结过程中的挥发、同时降低晶界电阻和本征电阻,从而达到大幅度提升锆酸镧锂固态电解质的离子电导率的目的。
-
公开(公告)号:CN112175205A
公开(公告)日:2021-01-05
申请号:CN201910585260.2
申请日:2019-07-01
Applicant: 哈尔滨工业大学
IPC: C08J3/075 , C08F251/00 , C08F220/56 , C08F222/38 , C08K7/18 , B33Y70/10 , B33Y10/00
Abstract: 一种磁性水凝胶及其制备方法和3D打印方法,属于生物药物输送技术领域。本发明将磁性水凝胶图形化。磁性凝胶主要是由丙烯酰胺(AAm)、海藻酸钠和羧基磁珠通过共混法制得的,是按下述步骤进行的:一、向蒸馏水中,依次加入交联剂、热引发剂、丙烯酰胺、海藻酸钠和硫酸钙,在室温下搅拌,滤网过滤,真空条件下静置,得到水凝胶前体;二、然后加入羧基磁珠分散液,搅拌,加入四甲基乙二胺溶液,置于模具中,密封,加热。本发明可应用于生物医疗及药物释放领域。
-
公开(公告)号:CN111843165A
公开(公告)日:2020-10-30
申请号:CN202010796192.7
申请日:2020-08-10
Applicant: 中国电子科技集团公司第三十八研究所 , 哈尔滨工业大学
Abstract: 本发明公开一种金刚石微流道的扩散连接方法,包括以下步骤:步骤S1:将中间层加工成与焊接面匹配的形状;清洗第一金刚石壳体、第二金刚石壳体、中间层,并烘干;将中间层置于第一金刚石壳体的焊接面上,第二金刚石壳体置于中间层上,通过卡具压实;将装配好的待焊件,在真空、温度小于750℃的条件下通过放电等离子体进行烧结。本发明的有益效果:利用活性金属元素Ti和金刚石反应生成碳化物TiC实现金刚石和中间层的冶金结合;通过低熔点中间层和放电等离子体烧结的表面活化的有效结合,实现焊接界面的快速形成;借助中间层良好的塑性缓解应力;金刚石微流道的焊接精度高,连接接头气密性良好。
-
公开(公告)号:CN108465891B
公开(公告)日:2020-08-25
申请号:CN201810240031.2
申请日:2018-03-22
Applicant: 哈尔滨工业大学
Abstract: 本发明提供一种钇铁石榴石铁氧体陶瓷与铜的连接方法,即选取一定厚度的三氧化二铝陶瓷薄片(纯度95wt.%)作为硬质中间层,先采用金属氧化物钎料,在空气中实现钇铁石榴石铁氧体与三氧化二铝陶瓷薄片的连接,然后采用银‑铜‑钛钎料,在真空中实现三氧化二铝陶瓷薄片的另一侧与铜的连接,从而通过两步法实现钇铁石榴石铁氧体与铜的连接,与现有技术比较,本发明的有益效果在于,本发明采用限定厚度的三氧化二铝陶瓷薄层作为中间层,显著降低接头热应力,提高了钇铁石榴石铁氧体与铜连接的接头强度,且通过硬钎焊代替传统软钎焊及胶粘的方法连接钇铁石榴石铁氧体与铜,大大提高了钇铁石榴石铁氧体/铜接头强度,而且提升了此接头的使用温度。
-
公开(公告)号:CN110734296A
公开(公告)日:2020-01-31
申请号:CN201910960967.7
申请日:2019-10-11
Applicant: 哈尔滨工业大学
IPC: C04B37/02
Abstract: 本发明提供了一种基于镍基高温合金与陶瓷的连接接头及其制备方法,属于金属与陶瓷连接技术领域,所述基于镍基高温合金与陶瓷的连接接头的制备方法,包括以下步骤:分别将镍基高温合金与陶瓷的待焊面进行打磨后,用洗液清洗;分别将清洗后的镍基高温合金与清洗后的陶瓷进行镀钛膜;将金硅钎料置于镀钛膜后的镍基高温合金与镀钛膜后的陶瓷之间,压紧后放入真空炉中,加热后冷却至室温,获得基于镍基高温合金与陶瓷的连接接头。本发明通过在镍基高温合金与陶瓷表面镀钛膜,再以金硅合金作为低温钎焊钎料,能够将表面改性的镍基高温合金与陶瓷进行钎焊连接,获得强度较高的连接接头,且接头在室温剪切强度为50±5MPa,700℃剪切强度为10±2MPa。
-
公开(公告)号:CN110576193A
公开(公告)日:2019-12-17
申请号:CN201911037331.1
申请日:2019-10-29
Applicant: 哈尔滨工业大学
Abstract: 一种以柠檬酸盐为还原剂制备超细银纳米线的方法,属于银纳米线制备的技术领域。本发明要解决现有柠檬酸盐作为还原剂制备银纳米线,前驱体浓度很低导致合成效率低,进而产率低的技术问题。本发明方法:一、在室温、搅拌下,将聚乙烯吡咯烷酮的水溶液、硝酸银的水溶液、控制剂的水溶液和蒸馏水混匀,再加入柠檬酸盐的水溶液,搅拌至均匀;二、在密封下,水热反应,自然冷却至室温;三、稀释,震荡或超声处理,过滤,用蒸馏水冲洗滤膜,收集滤膜上截留物后震荡,即得到高纯度超细银纳米线。本发明制得的银纳米线具有20-30nm的超细直径和长达数十微米的长度。本发明具有成本低、纯度高的优点。
-
公开(公告)号:CN110534356A
公开(公告)日:2019-12-03
申请号:CN201910854635.0
申请日:2019-09-10
Applicant: 哈尔滨工业大学
Abstract: 一种用于超级电容器的金属硫化物纳米管/金属氢氧化物复合电极的制备方法,它涉及一种超级电容器复合电极材料的制备方法。本发明要解决现有金属硫化物作为超级电容器电极材料时,使用寿命不佳的问题。制备方法:一、清洗;二、水热法制备;三、离子交换法制备;四、电沉积。本发明用于金属硫化物纳米管/金属氢氧化物复合电极的制备。
-
-
-
-
-
-
-
-
-