-
公开(公告)号:CN1719251A
公开(公告)日:2006-01-11
申请号:CN200510010203.X
申请日:2005-07-20
Applicant: 哈尔滨工业大学
Abstract: 密封电磁继电器多余物微粒的复合检测系统,它具体涉及继电器内部多余物的检测方法,它的目的是为了解决现有的马特拉方法检测效率低,无法测定存在于密封电磁继电器衔铁与极面之间的多余物微粒及无法进一步分析多余物微粒对继电器造成的危害程度的问题。本发明的3的控制信号输出端连接4的信号输入端,3的测量数据输入端连接5的测量数据输出端,4的多路控制信号输出端连接6、7和8,6的触发信号输出端连接5,7的测量数据输出端连接5,8的测量数据输出端连接5。本发明利用测试动态参数能有效地检测出存在于密封电磁继电器衔铁与极面之间的多余物微粒,并根据动态参数序列来判定多余物的大小及它对密封电磁继电器功能造成的危害程度。
-
公开(公告)号:CN112666605B
公开(公告)日:2021-11-26
申请号:CN202110068353.5
申请日:2021-01-19
Applicant: 哈尔滨工业大学
Abstract: 基于主成分分析和多目标遗传算法挑选地震动的方法,本发明涉及一种应用机器学习挑选地震动的方法。挑选地震动的方法:一、确定地震信息;二、应用机器学习中的主成分算法提取数据库中的地震动数据;三、将地震信息输入到地震动预测模型中,得到目标场地的条件均值谱;四、将地震信息输入到地震动持时的预测模型中;五、根据结构自振周期将条件均值谱分为三段;六、确定地震动持时误差;七、通过多目标遗传算法以步骤五和步骤六为约束条件,确定一组组合系数使误差最小,即为挑选的地震动。本发明将机器学习中主成分和多目标遗传算法引入到地震动挑选中,解决基于调幅得到的地震动的不确定性。
-
公开(公告)号:CN105068244B
公开(公告)日:2018-09-07
申请号:CN201510517575.5
申请日:2015-08-22
Applicant: 哈尔滨工业大学
IPC: G02B26/08
Abstract: 一种通过DMD拼接实现的分辨率提高的方法。本发明属于提高DMD分辨率的技术领域。它的方法步骤一、在计算机上将4k×4k的图像通过图像分割的方法分为4k×2k、4k×2k两部分;二、将DMD1芯片放置在双层固定台的底层固定台上的滑动导轨上,DMD2芯片固定放置在双层固定台的上层固定台上;三、DMD控制芯片将上述两部分图像信号进行处理后,将上述两部分4K×2K的图像分别同时传输到DMD1芯片和DMD2芯片中;四、通过高分辨率CCD相机对DMD1芯片像素和DMD2芯片像素成像,再通过精确位置移动平台能驱动DMD1芯片做相对于双层固定台的底层固定台台面做精密平行位移,使DMD1芯片边缘像素与DMD2芯片边缘像素之间的距离达到标称值。本发明能实现将两块DMD芯片像无缝拼接,大幅度提高DMD芯片的分辨率。
-
公开(公告)号:CN107192979A
公开(公告)日:2017-09-22
申请号:CN201710365986.6
申请日:2017-05-23
Applicant: 哈尔滨工业大学(威海)
IPC: G01S5/06
CPC classification number: G01S5/06
Abstract: 一种最大似然定位计算中的不确定性分析方法,涉及最大似然定位计算过程中的不确定性分析。本发明是为了有效解决最大似然定位计算过程中的不确定性敏感性分析和综合问题。本发明所述的一种最大似然定位计算的不确定性敏感分析方法,首先构建定位网络,测量最大似然定位计算中各个距离估计的不确定性;然后采用偏微分的方法计算各个不确定性因素的敏感因子,评估各个不确定性因素的不确定性对定位结果的影响程度,为改善最大似然定位精度的方法提供支持;最后对不确定性进行综合,获得最大似然定位计算结果的不确定度,以此评估定位计算结果的质量,也为导航等后续处理方法提供参考和决策信息。
-
公开(公告)号:CN107124700A
公开(公告)日:2017-09-01
申请号:CN201710368739.1
申请日:2017-05-23
Applicant: 哈尔滨工业大学(威海)
CPC classification number: H04W4/023 , G01S5/0257 , G01S5/14 , G01S5/30 , H04W4/025 , H04W64/003
Abstract: 一种基于TDOA通信距离估计的不确定性分析方法,涉及基于TDOA无线通信距离估计过程中的不确定性分析。本发明是为了有效解决基于TDOA通信距离估计过程中的不确定性敏感性分析和传播问题。本发明所述的一种基于TDOA通信距离估计的不确定性分析方法,首先分析距离估计过程中的不确定性因素,采用偏微分的方法获得不确定性因素的敏感因子;然后测量基于TDOA通信距离估计中传输时间差测量的不确定性,从而评估传输时间测量不确定度对距离估计结果的影响程度,为改善通信距离估计精度方法提供支持;最后,计算传输时间差测量值的不确定性传播到距离估计结果的影响,并以此来评估通信距离估计的质量,也为后续处理方法提供质量评估参考。
-
公开(公告)号:CN105068244A
公开(公告)日:2015-11-18
申请号:CN201510517575.5
申请日:2015-08-22
Applicant: 哈尔滨工业大学
IPC: G02B26/08
Abstract: 一种通过DMD拼接实现的分辨率提高的方法。本发明属于提高DMD分辨率的技术领域。它的方法步骤一、在计算机上将4k×4k的图像通过图像分割的方法分为4k×2k、4k×2k两部分;二、将DMD1芯片放置在双层固定台的底层固定台上的滑动导轨上,DMD2芯片固定放置在双层固定台的上层固定台上;三、DMD控制芯片将上述两部分图像信号进行处理后,将上述两部分4K×2K的图像分别同时传输到DMD1芯片和DMD2芯片中;四、通过高分辨率CCD相机对DMD1芯片像素和DMD2芯片像素成像,再通过精确位置移动平台能驱动DMD1芯片做相对于双层固定台的底层固定台台面做精密平行位移,使DMD1芯片边缘像素与DMD2芯片边缘像素之间的距离达到标称值。本发明能实现将两块DMD芯片像无缝拼接,大幅度提高DMD芯片的分辨率。
-
公开(公告)号:CN102128723A
公开(公告)日:2011-07-20
申请号:CN201010595372.5
申请日:2010-12-20
Applicant: 哈尔滨工业大学
Abstract: 本发明提供一种满足车端关系组件干涉性试验、功能性试验和研究性试验的基于六自由度并联机构的车端关系综合试验台。前反力基础与地基固定,通过三组下铰支座与六套液压执行机构相连,液压执行机构的前端通过三组上铰支座与运动平台相连,运动平台通过托架连接空气弹簧,另一端通过连接架与前端过渡板连接,运动平台上安装六维力/力矩传感器。本发明采用模块化柔性设计,通过调整车端不同部件的组合或单个部件,满足铁路客车车辆车端上的所有部件进行试验,模拟列车通过直线、曲线时的状态,检验安装在车端各部件的相互干涉关系;进行功能性试验和研究性试验。也适合于其他大型构件的运动模拟试验和力加载试验。
-
公开(公告)号:CN102063122A
公开(公告)日:2011-05-18
申请号:CN201010537190.2
申请日:2010-11-10
Applicant: 哈尔滨工业大学
IPC: G05D1/00
Abstract: 本发明提供一种空间六自由度运动台模态控制方法。采用空间六自度液压运动台模态矩阵将强耦合物理空间系统变换至解耦后的模态空间系统,在传统空间六自由度液压运动台控制基础上,引入模态控制的概念,并利用模态变换矩阵,将强动力学耦合六自由度液压运动台解耦,并将期望物理输入信号和运动台实际输出信号变换为模态信号进行独立模态控制调节,实现空间六自由度液压运动台的驱动和控制,有效地削弱空间六自度液压运动系统中各作动器之间和自由度之间耦合影响,改善六自由度液压运动台的单自由度运动和多自由度复合运动复现等指标,提高第一阶模态接近的自由度以外的自由度频宽。
-
公开(公告)号:CN102004822A
公开(公告)日:2011-04-06
申请号:CN201010537154.6
申请日:2010-11-10
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明提供一种基于模态的空间六自由度并联运动系统频率分析方法。本发明是这样实现的:根据空间对接六自由度并联运动系统的二阶振动微分方程,建立并联运动系统的模态方程,构造方程系统矩阵,采用数值分析方法对系统矩阵进行分解,计算六自由度并联运动系统的低阶模态集及其对应的特征频率,分析出空间六自由度并联运动系统的低阶模态频率。本发明突破传统基于物理空间分析和设计的方法,可以应用到所有空间六自由度并联系统的设计和分析中,使设计的机构满足设计频宽要求,为改变系统模态提供有效依据,为更有效的六自由度结构设计和优化提供新的方法和思路,对于工程实际应用和理论分析具有重要意义。
-
公开(公告)号:CN101982822A
公开(公告)日:2011-03-02
申请号:CN201010537204.0
申请日:2010-11-10
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 本发明提供一种空间六自由度运动系统模态建模方法。将复杂的空间六自由度并联运动系统离散为若干子结构,采用子结构传递矩阵法计算其前几阶模态,获得子结构低阶模态特性,构造模态矩阵,用模态坐标变换,将物理坐标转换为模态坐标,建立各子结构模态运动二阶微分方程,去掉冗余自由度,对各子结构进行模态综合,从而建立空间六自由度并联运动系统整体的模态运动方程,得到空间对接六自由度并联运动系统模态模型,最后通过坐标变换将其转换至物理坐标下,获得其物理空间动态方程。本发明是具有超大工作空间、超长支腿运动行程系统频宽和精度要求的运动系统的模态建模方法,解决空间对接超大型运动系统的多刚体建模的局限性。
-
-
-
-
-
-
-
-
-