非线性扰动下无拖曳动力学协调条件确定方法及控制方法

    公开(公告)号:CN114675666B

    公开(公告)日:2024-10-18

    申请号:CN202210345639.8

    申请日:2022-03-31

    Abstract: 一种非线性扰动下无拖曳动力学协调条件确定方法及控制方法,首先,建立位移模式单自由度无拖曳控制动力学方程及负刚度力加速度函数;随后,给出建造位移模式无拖曳控制系统的基本动力学协调条件;在不满足基本动力学协调条件的情况下,从位移模式单自由度无拖曳控制动力学方程退化得到一个切换动力学方程;通过建立该切换动力学方程的Hamilton函数,导出切换动力学方程的全局动力学分界线相轨迹的解析表达式,形象地给出了无拖曳推力器最大推力不足时的位移模式无拖曳控制让步动力学协调条件;最后,在位移模式单自由度无拖曳控制满足让步动力学协调条件的情况下,给出避免指令推力为最大推力的检验质量初始状态及指令状态设置方法。

    一种消除静差的位移模式无拖曳控制方法

    公开(公告)号:CN113200154B

    公开(公告)日:2022-12-13

    申请号:CN202110350449.0

    申请日:2021-03-31

    Abstract: 本发明涉及一种消除静差的位移模式无拖曳控制方法,属于卫星无拖曳控制技术领域,包括如下步骤:建立检验质量受扰力模型未限定情形下一般形式的位移模式单自由度无拖曳控制动力学方程;假设检验质量受扰力模型为同时为位移及时间的线性函数,将检验质量受扰力加速度表达式代入动力学方程中,得到检验质量受扰力同时为位移及时间线性函数情形下的无拖曳控制动力学方程;由检验质量受扰力为位移及时间线性函数情形下的无拖曳控制动力学方程得到控制对象的传递函数,设计位移模式无拖曳PID+双积分控制器,建立位移模式无拖曳控制系统;将位移模式无拖曳PID+双积分控制器注入航天器,基于该控制器对航天器进行串联校正单位负反馈无拖曳控制。

    一种利用无拖曳控制提取惯性传感器负刚度力零位的方法

    公开(公告)号:CN113219820A

    公开(公告)日:2021-08-06

    申请号:CN202110348696.7

    申请日:2021-03-31

    Abstract: 本发明涉及一种利用无拖曳控制提取惯性传感器负刚度力零位的方法:建立非保守外干扰力加速度随轨道位置变化的数据表;在不考虑姿态运动影响前提下,建立最一般形式的位移模式单自由度无拖曳控制动力学方程;建立检验质量受扰力为位移线性函数情形下的位移模式单自由度无拖曳控制动力学方程;以卫星惯性传感器电极室形心到检验质量质心的位移矢量作为被控状态参数,得到控制对象的传递函数;引入PD控制器Gc(s),构建位移模式无拖曳控制系统;在该单自由度方向非保守外干扰力稳定的轨道弧段,对卫星进行位移模式无拖曳PD控制,获取位移模式无拖曳PD控制系统的稳态响应数据,并由此得到无拖曳PD控制稳态位移静差xsd;最后计算得到负刚度力零位xfns0。

    一种基于特征模型的自适应控制方法

    公开(公告)号:CN110687786A

    公开(公告)日:2020-01-14

    申请号:CN201910951321.2

    申请日:2019-10-08

    Abstract: 一种基于特征模型的自适应控制方法,首先获取被控对象的特征模型,然后设计特征模型的系数与状态相关的界和参数辨识的投影方法,使用投影辨识算法辨识特征模型中的未知系数变量,得到辨识值,最后根据辨识值得到控制量,进而得到下一周期被控对象的输入,完成当前周期的基于特征模型的闭环控制。本发明方法通过设计与状态相关的系数的界,并进一步设计参数辨识的投影方法,解决了特征模型的参数难以确定常数的界的问题,实现了欧拉-拉格朗日系统基于特征模型的自适应控制。同时,方法可涵盖多类被控对象,包括航天器被控对象、先进静止无功发生器被控对象等欧拉-拉格朗日系统,具有较好的通用性与应用前景。

    一种高速大范围机动目标轨迹的智能实时预测方法

    公开(公告)号:CN110309909A

    公开(公告)日:2019-10-08

    申请号:CN201910562518.7

    申请日:2019-06-26

    Abstract: 一种高速大范围机动目标轨迹的智能实时预测方法,首先提出了学习样本建立方法;然后构建了基于改进BP神经网络的目标运动规律学习及训练机制;最后通过单步预测与滚动预测方法,实现了空天动目标高速大范围机动轨迹的智能、快速、准确预测;本发明仅需知道空天动目标的历史及当前时刻的位置数据,无需目标的运动模型,同时通过设计动量因子和采用变步长迭代策略提高了传统BP神经网络的收敛速度、减小了收敛过程中的振荡,大幅提升了轨迹预测的精度,可直接应用于各类高速、高机动目标的轨迹预测问题,具有较强的适用性,为后续针对X-37B等高超声速飞行器监视、跟踪、拦截等任务提供了理论基础和技术储备。

    一种柔性航天器分布式执行机构和敏感器优化配置方法

    公开(公告)号:CN106096206A

    公开(公告)日:2016-11-09

    申请号:CN201610497871.8

    申请日:2016-06-29

    Abstract: 一种柔性航天器分布式执行机构和敏感器优化配置方法,包含以下步骤:在柔性航天器上选取一系列安装执行机构(例如微型控制力矩陀螺等)和敏感器(角速度计等)的候选节点;假设在候选节点上安装执行机构和敏感器,根据系统能观能控矩阵计算能控性指标和能观性指标,基于能控能观子空间计算各个执行机构和敏感器组合特性的判定指标;依据各指标值的大小选择配置节点,本发明所给出方案能够使系统中各执行机构和敏感器作用发挥到最大,而配置数量最小,精简了系统结构。该方法的通用性强,结构简单、属于国内外相关研究和应用的创新方法,具有很大的市场竞争力,弥补了相关领域实用性方案和理论研究的空白,具有很强的工程实用和理论指导意义。

Patent Agency Ranking