一种基于组合滤波的航天器三超近零误差跟踪控制方法

    公开(公告)号:CN111625010A

    公开(公告)日:2020-09-04

    申请号:CN202010350592.5

    申请日:2020-04-28

    Abstract: 一种基于组合滤波的航天器三超近零误差跟踪控制方法,适用于目标跟踪且具有载荷超高精度确定需求的领域。与传统的航天器星体平台单级姿态控制不同,本发明针对具有“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等“三超”控制性能的航天器平台提出了基于组合滤波的星体-载荷-快反镜三级姿态协同控制方法,利用深度学习提高对目标的位姿解算,并从星体、载荷、快反镜三级系统逐级提高姿态控制精度,为光学载荷快速跟踪和高质量成像提供高精度姿态控制。本发明方法主要思路为:建立三级协同控制系统动力学模型;基于深度学习的目标航天器特征部位位姿解算;设计多级系统融合滤波器;设计三级协同控制系统控制器,包括带宽设计。

    一种航天器三超控制可变包络角动量分析方法

    公开(公告)号:CN111605735A

    公开(公告)日:2020-09-01

    申请号:CN202010351874.7

    申请日:2020-04-28

    Abstract: 本发明一种航天器三超控制可变包络角动量分析方法,适用于兼具有敏捷机动要求与高精度指向控制需求的航天器姿态控制领域。现有的控制力矩陀螺群安装倾角固定不变,难以最大限度的发挥控制力矩陀螺群角动量能力。针对此,设计一种航天器三超控制可变包络角动量分析方法。在原有控制力矩陀螺群安装构型固定的基础上,引入安装倾角这一控制变量,实现控制力矩陀螺群角动量包络的进一步提升,分析结果表明安装倾角可变时,在XOY平面内控制力矩陀螺群合成角动量能够由250Nms提高到261Nms,在Z轴方向控制力矩陀螺群合成角动量能够由145Nm提高到279Nms,提高了航天器敏捷机动能力。

    一种航天器多级复合控制的超高精度姿态确定方法

    公开(公告)号:CN108801270B

    公开(公告)日:2020-06-09

    申请号:CN201810588771.5

    申请日:2018-06-08

    Abstract: 一种航天器多级复合控制的超高精度姿态确定方法,步骤为:(1)建立航天器多级复合控制系统的星体‑载荷、载荷‑快反镜之间的姿态约束模型;(2)建立星体‑载荷、载荷‑快反镜之间的相对姿态四元数模型;(3)判断导星敏感器有测量值;(4)无测量值时,建立载荷姿态估计误差状态方程,采用卡尔曼滤波方法估计载荷姿态,实现载荷姿态高精度确定;(5)建立星体姿态估计误差状态方程,采用卡尔曼滤波实现星体姿态高精度确定;(6)有测量值时,采用导星敏感器的测量值qfm估计载荷视线姿态;(7)建立载荷姿态估计误差状态方程,采用卡尔曼滤波方法估计载荷姿态,实现载荷姿态高精度确定;(8)建立星体姿态估计误差状态方程。

    一种平台在轨标定方法
    54.
    发明授权

    公开(公告)号:CN108995829B

    公开(公告)日:2020-03-24

    申请号:CN201810716502.2

    申请日:2018-06-29

    Abstract: 一种平台在轨标定方法,特别是一种六自由度Gough‑Stewart平台在轨标定方法,通过补偿主动指向超静平台的作动器力系数,降低主动指向超静平台的作动器载荷三轴姿态耦合系数。包括步骤:根据归一化处理的载荷整体的三轴姿态、三轴主惯量,确定载荷整体的质心三轴实际受到的合力矩归一化结果;根据归一化处理的载荷质心的平动位移,归一化处理载荷质心三轴实际作用力。根据归一化处理的载荷质心的平动位移和归一化处理载荷质心三轴实际作用力,迭代计算给出作动器力系数的最优解。根据辨识的作动器力系数补偿主动指向超静作动器驱动电流,实现主动指向超静平台的载荷三轴姿态解耦,降低三轴姿态耦合系数。

    一种基于分布式柔性结构的智能挠性作动器

    公开(公告)号:CN108639383B

    公开(公告)日:2020-03-24

    申请号:CN201810461473.X

    申请日:2018-05-15

    Abstract: 一种基于分布式柔性结构的智能挠性作动器,包括:上柔性铰链(2)、支杆(3)、连接块(4)、下柔性铰链(6)、上膜簧(7)、动子安装盖(9)、音圈电机(10)、外筒(11)、定子安装盖(12)、下膜簧(13)、位移传感器被测件(14)、位移传感器(15)、底盖(16)。安装完成后,通过大量程高精度电涡流位移传感器(15)的测量反馈和大行程快响应音圈电机(10)的控制输出,实现智能挠性作动器的振动隔离、扰振抑制和精确指向调节。本发明的智能挠性作动器采用双膜簧和双柔性铰链结构形式,控制精度高、扩展性好,可广泛的应用于航天器超高精度、超高稳定度、超敏捷控制领域。

    一种双SGCMG与磁力矩器组合的卫星控制方法

    公开(公告)号:CN110697085A

    公开(公告)日:2020-01-17

    申请号:CN201910872219.3

    申请日:2019-09-16

    Abstract: 一种双SGCMG与磁力矩器组合的卫星控制方法,解算出两个非平行的SGCMG合成角动量为零所对应的标称框架角。其次,根据标称框架角构型,构造新的控制框架,从而实现将三维控制力矩指令空间分解为分别由SGCMG与磁力矩器来实现的两正交子空间,并根据SGCMG与磁力矩器输出力矩量级给出了不同的控制参数的选择方式。最后,根据不同子空间的控制指令,给出了SGCMG框架角速度指令与考虑磁卸载的磁力矩器控制磁矩求解公式。本发明解决了当控制力矩陀螺发生故障仅余两个可用时的系统姿态控制问题,以达到充分延长卫星使用寿命的目的。

    基于烈度均衡的遥感卫星CMG群运行优化方法及装置

    公开(公告)号:CN119536331A

    公开(公告)日:2025-02-28

    申请号:CN202411594223.5

    申请日:2024-11-08

    Abstract: 本发明提供了一种基于烈度均衡的遥感卫星CMG群运行优化方法及装置,涉及航天器姿态控制领域,其中方法包括:根据CMG群的历史运行数据,计算得到CMG群中每个控制力矩陀螺的使用烈度累计值;其中,历史运行数据包括历史框架角速度和历史框架角加速度;根据各CMG使用烈度累计值,确定CMG群是否满足均衡运行要求;所述均衡运行要求用于保证CMG群处于稳定在轨工作且预期寿命比较均衡状态;若不满足,则将使用烈度累计值最大的第一控制力矩陀螺的实时框架角速度降额,同时将控制力矩均衡至CMG群其余控制力矩陀螺。本发明,保证遥感卫星敏捷机动能力的同时可有效解决使用导致的各CMG寿命不均问题。

    一种地表曲线条带目标的跟踪方法及装置

    公开(公告)号:CN119270928A

    公开(公告)日:2025-01-07

    申请号:CN202411374419.3

    申请日:2024-09-29

    Abstract: 本发明提供了一种地表曲线条带目标的跟踪方法及装置。方法包括:利用WGS84坐标系对获得的若干个曲线条带目标的地表位置参数进行拟合,得到曲线条带目标在WGS84坐标系下的位置矢量;将所述曲线条带目标在WGS84坐标系下的位置矢量进行转换,得到所述曲线条带目标在J2000惯性系下的位置矢量;根据所述曲线条带目标在J2000惯性系下的位置矢量,得到卫星指向所述曲线条带目标的矢量;基于卫星指向所述曲线条带目标的矢量,计算卫星指向所述曲线条带目标的姿态角;根据所述卫星指向所述曲线条带目标的姿态角,得到卫星指向曲线条带目标的惯性四元数和惯性角速度,以对所述地表曲线条带目标进行跟踪。本方案,够满足地表曲线条带目标的高效能成像。

    一种挠性作动器故障诊断方法
    59.
    发明公开

    公开(公告)号:CN119269050A

    公开(公告)日:2025-01-07

    申请号:CN202411374380.5

    申请日:2024-09-29

    Abstract: 本发明提供了一种挠性作动器故障诊断方法。方法包括:基于构建得到的挠性作动器运动学模型对主动驱动机构的输出力进行调整,以使所述输出力呈正弦波形式;以所述主动驱动机构每个时刻的输出力大小为判定条件,利用其中一个直线位移敏感器为基准对其他位移敏感器进行标定,以使所述主动驱动机构和每个直线位移敏感器均位于同一基准;根据所述主动驱动机构的输出力,得到所述主动驱动机构的期望位移;将所述主动驱动机构的期望位移值、标定后的每个直线位移敏感器的输出位移值两两作差后分别与预设诊断系数相比较,以分别对所述主动驱动机构和每个直线位移敏感器进行故障诊断。本方案,能够实现航天器在轨运行期间挠性作动器故障的准确诊断。

    一种主动指向超静平台多自由度可重构设计方法及装置

    公开(公告)号:CN119248001A

    公开(公告)日:2025-01-03

    申请号:CN202411374176.3

    申请日:2024-09-29

    Abstract: 本发明实施例涉及航天器姿态控制技术领域,特别涉及一种主动指向超静平台多自由度可重构设计方法及装置。方法包括:根据主动指向超静平台的圆形上端面半径、作动器夹角,计算主动指向超静平台上的多个作动器运动与被控对象质心运动的雅可比矩阵;根据雅可比矩阵,计算作动器故障下的多个自由度可重构参数;将多个自由度可重构参数和设计参数进行对比,判断当前雅可比矩阵是否符合标准;若不符合,调节上端面半径和作动器夹角,以重构新的雅可比矩阵,重复上述步骤,直至符合标准。本发明实施例提供了一种主动指向超静平台多自由度可重构设计方法,能够不断重构指向超静平台的构型,使其在部分作动器故障下,仍具有多自由度。

Patent Agency Ranking