-
公开(公告)号:CN115676773B
公开(公告)日:2023-06-27
申请号:CN202211351298.1
申请日:2022-10-31
Applicant: 哈尔滨工业大学
Abstract: 一种利用热探针对二维过渡金属硫属化物/丝素蛋白柔性衬底进行微纳结构加工的方法,涉及一种对丝素蛋白柔性衬底进行微纳结构加工的方法。本发明是要解决现有的微纳加工技术加工精度低、制造工艺复杂和可加工材料受限的技术问题。本发明选用可加热的原子力探针作为加工工具,制备二维过渡金属硫属化物/丝素蛋白异质结构,按照设定的加工轨迹和加工尺寸在二维过渡金属硫属化物/丝素蛋白柔性衬底进行可控尺寸加工,制备微纳结构。利用热探针刻划加工的微纳米制造方法是一种具有加工方法简单、易于操作、加工环境需求低、可加工材料广泛、可实现纳米级加工精度等优势的微纳米制造方法。
-
公开(公告)号:CN115676773A
公开(公告)日:2023-02-03
申请号:CN202211351298.1
申请日:2022-10-31
Applicant: 哈尔滨工业大学
Abstract: 一种利用热探针对二维过渡金属硫属化物/丝素蛋白柔性衬底进行微纳结构加工的方法,涉及一种对丝素蛋白柔性衬底进行微纳结构加工的方法。本发明是要解决现有的微纳加工技术加工精度低、制造工艺复杂和可加工材料受限的技术问题。本发明选用可加热的原子力探针作为加工工具,制备二维过渡金属硫属化物/丝素蛋白异质结构,按照设定的加工轨迹和加工尺寸在二维过渡金属硫属化物/丝素蛋白柔性衬底进行可控尺寸加工,制备微纳结构。利用热探针刻划加工的微纳米制造方法是一种具有加工方法简单、易于操作、加工环境需求低、可加工材料广泛、可实现纳米级加工精度等优势的微纳米制造方法。
-
公开(公告)号:CN113511627A
公开(公告)日:2021-10-19
申请号:CN202110789807.8
申请日:2021-07-13
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种利用带有凸起阵列的结构化探针加工纳米结构的方法,所述方法包括如下步骤:步骤一、利用FIB技术加工金刚石探针针尖,在探针尖端加工出凸起阵列;步骤二、将步骤一制备的结构化探针安装在AFM加工系统中的扫描陶管上,在敲击模式下,探针在扫描陶管驱动下以探针谐振频率沿垂直方向振动敲击样品,使样品发生变形,通过扫描陶管控制探针在X‑Y平面运动,加工出纳米点阵。该方法利用结构化探针加工纳米点阵,一次压痕能够加工出多个纳米点,有效提高了加工效率,克服了相邻压痕挤压作用的影响,而且采用敲击模式实现纳米点的高效加工。
-
公开(公告)号:CN113406165A
公开(公告)日:2021-09-17
申请号:CN202110672096.6
申请日:2021-06-17
Abstract: 一种基于振动模式的电化学检测装置控制系统及检测方法,涉及一种电化学检测系统及检测方法。检测装置固定在Z向位移台上,X‑Y二维气浮平台上固定三维压电位移台,信号发生器控制激振压电陶瓷环的振动,电容式位移传感器测得激振压电陶瓷环的位移变化经电荷放大器处理后传递给锁相放大器,PID控制器将锁相放大器提取的电压幅值信号运算处理后对压电促动器进行控制,压电促动器、X‑Y二维气浮平台和三维压电位移台为上位机提供实时信号,上位机通过UMAC控制器控制Z向位移台、X‑Y二维气浮平台和三维压电位移台。探针以振动模式接近被测样品表面,减小相互作用力不易损坏,Z向闭环反馈功能保证距离恒定,检测更加准确。
-
公开(公告)号:CN110262309B
公开(公告)日:2020-11-17
申请号:CN201910368973.3
申请日:2019-05-05
Applicant: 哈尔滨工业大学
IPC: G05B19/042 , B82B3/00 , B82Y40/00 , G01B7/02 , G01B7/28
Abstract: 本发明公开了一种适用于微纳检测加工模块的控制系统及方法,所述系统包括微纳双模检测加工模块、三坐标工作台、PZT驱动器、UMAC、电荷放大器、锁相放大器、XY压电扫描台、路由器、上位机、CCD、XY向位移传感器和Z向位移传感器。本发明选用UMAC作为控制核心,利用其高性能伺服环、可扩展性强、集成度高特点,实现宏‑微联动控制,采用模拟信号方式,保证信号处理、传输的实时性,满足设计需求。本发明通过对电容式位移传感器信号放大、锁相处理,作为闭环控制参考信号,该方式测试结果精确、对测试环境要求较低,可以实现μN级闭环控制。锁相放大器的使用排除了电容式位移传感器测试结果中的噪声信号,利于闭环精确控制。
-
公开(公告)号:CN111665580A
公开(公告)日:2020-09-15
申请号:CN202010538180.4
申请日:2020-06-12
Applicant: 哈尔滨工业大学
Abstract: 一种适用于探索共体反射镜上薄膜制备工艺参数的装置,属于金属薄膜制备与检测技术领域。本发明包括外部框架、多个支撑柱和多个平面基底,所述外部框架上的四个竖直设置的支撑板上分别设有多个定位孔,所述多个定位孔、多个支撑柱以及多个平面基底数量均相同;每个所述支撑柱一端可拆卸固定插入定位孔内,每个支撑柱另一端设置在外部框架内并与平面基底一端可拆卸固定连接,所述平面基底另一端的端面与自由曲面相切。本发明具有与多面共体反射镜相同的表面粗糙度与相近的空间结构,而且便于检测,可以较为简单、准确、经济地获得沉积的工艺参数和靶基运动。
-
公开(公告)号:CN108557756B
公开(公告)日:2019-05-24
申请号:CN201810069712.7
申请日:2018-01-24
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种具有力伺服功能的微加工刀架,所述微加工刀架包括PZT促动器、第一位移传感器、第二位移传感器、丝杆、螺母、旋转环、柔性铰链、探针、导向支架和XY位移平台。本发明利用柔性铰链,将对法向力的测量转为对柔性铰链法向变形量的测量,对位移的测量更简单,更精确;采用环形中心对称柔性铰链,可以有效抵抗侧向力产生的变形,使探针与XY平面尽可能保持垂直,减小偏转角度;利用旋转环配合紧钉螺钉可以调节探针的角度,实现不同角度的微机械加工;通过更换柔性铰链可以改变最大载荷,以适用于加工不同硬度的工件;通过丝杆螺母可以调节第二位移传感器与柔性铰链的间距,便于确定初始间距,方便测量。
-
公开(公告)号:CN108253893B
公开(公告)日:2018-10-12
申请号:CN201810064688.8
申请日:2018-01-23
Applicant: 哈尔滨工业大学
IPC: G01B11/02
Abstract: 一种大量程高精度微接触力位移测量装置及其控制方法,涉及一种高精度位移检测装置及控制方法。音圈电机的动子与气浮导轨移动部件一端连接,音圈电机的定子与气浮导轨基座连接,气浮导轨基座右上端设有中空腔,气浮导轨移动部件滑动设置在气浮导轨基座的中空腔内,光栅尺与气浮导轨移动部件连接,读数头与气浮导轨基座连接;压电陶瓷执行器首端与气浮导轨移动部件另一端连接,压电陶瓷执行器末端与微力传感探针连接,辅助监控显微镜与压电陶瓷执行器的固定基座连接。本发明用于大量程高精度微接触力位移测量,可对毫米尺度精密零件及装配体的尺寸及形状精度等几何量进行纳米精度的无损测量。
-
公开(公告)号:CN108253893A
公开(公告)日:2018-07-06
申请号:CN201810064688.8
申请日:2018-01-23
Applicant: 哈尔滨工业大学
IPC: G01B11/02
Abstract: 一种大量程高精度微接触力位移测量装置及其控制方法,涉及一种高精度位移检测装置及控制方法。音圈电机的动子与气浮导轨移动部件一端连接,音圈电机的定子与气浮导轨基座连接,气浮导轨基座右上端设有中空腔,气浮导轨移动部件滑动设置在气浮导轨基座的中空腔内,光栅尺与气浮导轨移动部件连接,读数头与气浮导轨基座连接;压电陶瓷执行器首端与气浮导轨移动部件另一端连接,压电陶瓷执行器末端与微力传感探针连接,辅助监控显微镜与压电陶瓷执行器的固定基座连接。本发明用于大量程高精度微接触力位移测量,可对毫米尺度精密零件及装配体的尺寸及形状精度等几何量进行纳米精度的无损测量。
-
公开(公告)号:CN104150433B
公开(公告)日:2016-03-02
申请号:CN201410385711.5
申请日:2014-08-07
Applicant: 哈尔滨工业大学
Abstract: 一种采用AFM探针纳米刻划加工复杂三维微纳米结构的方法,属于微纳米结构加工领域。为了解决复杂三维微纳米结构加工问题,所述装置包括AFM、X方向精密工作台、Y方向精密工作台,X方向精密工作台底座固连在Y方向精密工作台的滑块上,X方向定位工作台的滑块进行X方向运动,Y方向精密工作台底座固连在AFM样品台上,Y方向定位工作台的滑块进行Y方向运动。本发明提出的三种方法分别通过对同一套商用AFM以及高精度定位平台系统的不用控制和参数设置,实现采用AFM探针纳米刻划技术加工复杂三维微纳米结构的加工。本发明能够在较低成本下解决复杂三维微纳米结构的加工问题,且方法简单,装置及加工实现成本相对较低。
-
-
-
-
-
-
-
-
-