一种基于语义解纠缠的深度伪造图像检测方法

    公开(公告)号:CN118334473A

    公开(公告)日:2024-07-12

    申请号:CN202410757677.3

    申请日:2024-06-13

    Applicant: 南昌大学

    Abstract: 本发明提出了一种基于语义解纠缠的深度伪造图像检测方法,包括如下步骤:S1、设计第一阶段训练的模型架构;S2、设计第二阶段训练的模型架构;S3、检验多尺度高频特征提取模块和多尺度高频特征融合模块的效果;S4、分析方法检测深度伪造图像的性能。第一阶段训练模型和第二阶段训练模型用于解纠缠图像共同伪造语义、图像特殊伪造语义和图像无关内容语义,以用于提高取证的鲁棒性和泛化能力。设计了自适应的高通滤波器、多尺度高频特征提取模块和多尺度高频特征融合模块,用于充分利用高频信息。提出了双阶段训练的方法,加强语义的解纠缠,提升提取的伪造语义的独立性,提高了语义在取证中的有效性。

    一种基于特征解耦的跨模态异质人脸识别和原型修复方法

    公开(公告)号:CN116152885B

    公开(公告)日:2023-08-01

    申请号:CN202211540523.6

    申请日:2022-12-02

    Applicant: 南昌大学

    Abstract: 本发明公开了一种基于特征解耦的跨模态异质人脸识别和原型修复方法,技术路线为:先从输入人脸图片学习到潜在特征空间,并在特征空间中解耦原型特征和源域特征,再用目标域特征替换源域特征,进而解码到像素空间中生成目标域的人脸原型图片。不同于现有跨模态人脸识别技术只关注系统自动识别准确率,本发明引入了跨模态人脸原型修复过程,提供了人工鉴别和比对途径,进而提高了复杂环境下人脸识别系统的鲁棒性。此项发明技术尤其适用于刑事侦查和犯罪识别。发明融合了解耦表征学习与生成对抗学习技术,通过在潜在特征空间中仅解耦原型和域特征,进而在像素空间中自适应地移除了人脸变化信息。

    一种基于深度学习检测模型的数据检测方法

    公开(公告)号:CN115937994A

    公开(公告)日:2023-04-07

    申请号:CN202310015602.3

    申请日:2023-01-06

    Applicant: 南昌大学

    Abstract: 本申请公开了一种基于深度学习检测模型的数据检测方法,具体包括以下子步骤:获取原始电子数据;将原始电子数据输入深度学习检测模型中,获取输出后的电子数据;响应于获取输出后的电子数据,确定深度学习检测模型的损失函数;响应于确定深度学习检测模型的损失函数,利用深度学习检测模型对输出后的电子数据进行优化。本申请通过提出的深度学习检测模型能够不需要纯化操作,直接检测反取证数据,使得反取证数据的检测过程更加直接和便利。

    一种基于对抗训练的电子数据信息反取证方法

    公开(公告)号:CN114757342B

    公开(公告)日:2022-09-09

    申请号:CN202210664838.5

    申请日:2022-06-14

    Applicant: 南昌大学

    Abstract: 本发明公开一种基于对抗训练的电子数据信息反取证方法,将DeepFake生成的伪电子数字信息加入对抗性干扰后输入GAN网络的一级生成器,并使用鉴别器监督,输出一级电子数字信息;将一级电子数字信息输入GAN网络的二级生成器,并使用鉴别器监督,输出模仿原始伪电子数字信息的二级电子数字信息;将二级电子数字信息输入GAN网络的三级生成器,并使用三级鉴别器监督,将三级生成器生成的电子数字信息再度转换,输出最终电子数字信息,并根据第一损失函数、第二损失函数以及额外损失构建GAN网络的最终损失函数。本发明能够提高反取证能力与视觉效果。

    一种基于误导学习的虚假人脸图片检测方法

    公开(公告)号:CN119445342A

    公开(公告)日:2025-02-14

    申请号:CN202411488541.3

    申请日:2024-10-24

    Applicant: 南昌大学

    Abstract: 本发明提供了一种基于误导学习的虚假人脸图片检测方法,S1:构建先验知识获取模块,对伪造特征提取器以及检测器构建基础的伪造伪影辨别能力;S2:搭建误导学习知识流以及偏执数据知识流;S3:引入单通道注意力融合网络,使模型自适应选择所需的多尺度伪造潜层特征以及多尺度真实图片潜层特征;S4:构建专门用于误导学习的高通滤波器,对伪造图像进行预处理操作;S5:引入误导学习损失,对伪造特征提取器进行训练约束;S6:针对伪造特征提取器外加自适应器微调。本发明使模型尽可能摆脱了图片中无关语义特征对模型的干扰所产生的特征依赖偏执,针对不同人种统计标签的伪造图片都具有优异的检测能力,在域内以及跨域测试下,都达到了最佳的性能。

    基于可视化特征分析的文本检测方法及系统

    公开(公告)号:CN119293229A

    公开(公告)日:2025-01-10

    申请号:CN202410711790.8

    申请日:2024-06-04

    Applicant: 南昌大学

    Abstract: 本发明提出一种基于可视化特征分析的文本检测方法及系统,该方法包括:特征提取阶段,采用的特征提取器由一个BERT模型和一个MLP分类器组成,以提取MLP的倒数第二层,对应于最后一个隐藏层,得到数据集中的文本特征;模型训练阶段,包括对分类中心c和分类半径r的初始化、数据集训练以及增强统一模式;文本检测阶段,提取待检测文本的文本特征,并根据所述待检测文本的文本特征获取特征距离分类中心c的距离和分类半径r,并根据所述特征距离分类中心c的距离和所述分类半径r判断所述待检测文本是否属于生成文本。本申请能够有效地检测人工智能生成的文本,提高检测准确率和泛化能力。

    一种多机构协同监察过滤方法及系统

    公开(公告)号:CN119255283A

    公开(公告)日:2025-01-03

    申请号:CN202411795338.0

    申请日:2024-12-09

    Abstract: 本发明提供一种多机构协同监察过滤方法及系统,方法包括:自气象预测机构中获取与天气对应的若干个结果数据记录,以构建第一等价划分;自数据采集基站中获取与天气对应的若干个过程数据记录,以构建第二等价划分;将不同的数据采集基站的第二等价划分合并为数据采集基站划分集合,并结合第一等价划分获取第一正确决策值;基于第一正确决策值判断数据采集基站为重要基站或初始冗余基站,将重要基站合并为重要基站集合;获取重要基站集合的第三正确决策值,以确定重要基站集合的决策能力是否符合要求,进而完成最终冗余基站的筛选及剔除。基于以上方式,在确保决策能力稳定的前提下,精简了数据采集基站的数量,提高了预测的准确性及效能。

    一种基于图拓扑学习的AI生成图像检测方法

    公开(公告)号:CN119048843A

    公开(公告)日:2024-11-29

    申请号:CN202411508410.7

    申请日:2024-10-28

    Applicant: 南昌大学

    Abstract: 本发明提供了一种基于图拓扑学习的AI生成图像检测方法,涉及图像处理技术领域。基于图拓扑学习的AI生成图像检测方法包括以下步骤:基于冻结的CLIP提取多张图像样本的全局视觉特征;基于所述多张图像样本构建图拓扑结构,基于图卷积网络获取图拓扑结构中节点之间的关系特征;进行拼接融合获得节点特征向量,并输送到线性层进行真假分类预测获得检测结果;基于度量学习损失函数更新图卷积网络的参数,基于二元交叉熵损失更新线性层的参数。本发明根据CLIP的视觉特征设计了一种难样本区分的图拓扑结构,将图拓扑的特征输入到图卷积网络中进行特征学习,进一步丰富和增强了特征表示的判别力,提升了检测时的准确性和泛化性。

    一种基于双阶段学习的深度伪造图像检测方法

    公开(公告)号:CN119006932A

    公开(公告)日:2024-11-22

    申请号:CN202411463290.3

    申请日:2024-10-21

    Applicant: 南昌大学

    Abstract: 本发明提供了一种基于双阶段学习的深度伪造图像检测方法,涉及图像处理技术领域,该方法包括以下步骤:S1、获取第一真假图像对的第一全局特征,基于所述第一全局特征获取第一通用伪造特征信息,基于所述第一通用伪造特征信息检测图像并更新所述初始检测模型的参数;S2、获取第二真假图像对的第二全局特征,基于所述第二全局特征获取第二通用伪造特征信息、特定伪造方法、性别以及种族,计算特征分类损失,基于所述特征分类损失更新检测模型的参数。本发明提供的基于双阶段学习的深度伪造图像检测方法,能够有效的检测深度伪造图像,并提高对于未知深度伪造图像技术的检测成功率。

Patent Agency Ranking