一种基于神经网络的垃圾邮件发送者检测方法

    公开(公告)号:CN117354274A

    公开(公告)日:2024-01-05

    申请号:CN202311642220.X

    申请日:2023-12-04

    Abstract: 本发明公开一种基于神经网络的垃圾邮件发送者检测方法。所述方法包括:计算节点用户与帖子的偶然关系;偶然关系是通过参数随机游走模型从初始社交图推断出来的;将用户与帖子的特征编码为特征向量,将特征向量编码为图神经网络的向量;将偶然关系作为图神经网络的边向量,将用户与帖子的特征编码分别编码为图神经网络的顶点向量和边向量,输入图神经网络;将图神经网络的输出输入到一个全连接神经网络,输出垃圾邮件发送者,垃圾邮件检测完成。本发明通过从异构网络的视角来检测垃圾邮件发送者以及加入偶然关系的计算,这使得对垃圾邮件发送者检测效率得到提高,可以有效检测出垃圾邮件发送者,从而净化网络环境,维护网络安全。

    一种基于对抗训练的电子数据信息反取证方法

    公开(公告)号:CN114757342B

    公开(公告)日:2022-09-09

    申请号:CN202210664838.5

    申请日:2022-06-14

    Applicant: 南昌大学

    Abstract: 本发明公开一种基于对抗训练的电子数据信息反取证方法,将DeepFake生成的伪电子数字信息加入对抗性干扰后输入GAN网络的一级生成器,并使用鉴别器监督,输出一级电子数字信息;将一级电子数字信息输入GAN网络的二级生成器,并使用鉴别器监督,输出模仿原始伪电子数字信息的二级电子数字信息;将二级电子数字信息输入GAN网络的三级生成器,并使用三级鉴别器监督,将三级生成器生成的电子数字信息再度转换,输出最终电子数字信息,并根据第一损失函数、第二损失函数以及额外损失构建GAN网络的最终损失函数。本发明能够提高反取证能力与视觉效果。

    一种基于对抗训练的电子数据信息反取证方法

    公开(公告)号:CN114757342A

    公开(公告)日:2022-07-15

    申请号:CN202210664838.5

    申请日:2022-06-14

    Applicant: 南昌大学

    Abstract: 本发明公开一种基于对抗训练的电子数据信息反取证方法,将DeepFake生成的伪电子数字信息加入对抗性干扰后输入GAN网络的一级生成器,并使用鉴别器监督,输出一级电子数字信息;将一级电子数字信息输入GAN网络的二级生成器,并使用鉴别器监督,输出模仿原始伪电子数字信息的二级电子数字信息;将二级电子数字信息输入GAN网络的三级生成器,并使用三级鉴别器监督,将三级生成器生成的电子数字信息再度转换,输出最终电子数字信息,并根据第一损失函数、第二损失函数以及额外损失构建GAN网络的最终损失函数。本发明能够提高反取证能力与视觉效果。

    一种基于联邦学习机制的数据识别方法及其系统

    公开(公告)号:CN115830400B

    公开(公告)日:2023-05-16

    申请号:CN202310097955.2

    申请日:2023-02-10

    Applicant: 南昌大学

    Abstract: 本申请公开了一种基于联邦学习机制的数据识别方法及其系统,其中基于联邦学习机制的数据识别方法,具体包括以下子步骤:确定识别模型的骨干网络;响应于确定识别模型的骨干网络后,对识别模型进行联邦学习,完成识别模型的训练;将电子数据输入至训练完成的识别模型,进行电子数据的识别。本申请重点考虑对用户数据的的隐私保护,通过对联邦学习机制以及残差网络算法的研究和学习,解决了目前其他模型安全性不足的缺陷,设计出了在做到保护用户隐私和安全的前提下,仍能保持对数据进行良好的识别的模型,从而达到对用户提供的电子数据进行良好识别的目的。

    一种基于联邦学习机制的数据识别方法及其系统

    公开(公告)号:CN115830400A

    公开(公告)日:2023-03-21

    申请号:CN202310097955.2

    申请日:2023-02-10

    Applicant: 南昌大学

    Abstract: 本申请公开了一种基于联邦学习机制的数据识别方法及其系统,其中基于联邦学习机制的数据识别方法,具体包括以下子步骤:确定识别模型的骨干网络;响应于确定识别模型的骨干网络后,对识别模型进行联邦学习,完成识别模型的训练;将电子数据输入至训练完成的识别模型,进行电子数据的识别。本申请重点考虑对用户数据的的隐私保护,通过对联邦学习机制以及残差网络算法的研究和学习,解决了目前其他模型安全性不足的缺陷,设计出了在做到保护用户隐私和安全的前提下,仍能保持对数据进行良好的识别的模型,从而达到对用户提供的电子数据进行良好识别的目的。

Patent Agency Ranking