基于深度学习的自平衡机器人设计方法及系统

    公开(公告)号:CN118170035B

    公开(公告)日:2024-07-19

    申请号:CN202410607166.3

    申请日:2024-05-16

    Abstract: 本发明提供一种基于深度学习的自平衡机器人设计方法及系统,方法包括:根据自平衡机器人的三维数据进行数学建模;根据欧拉拉格朗日运动方程以对三个方向的欧拉拉格朗日运动方程进行线性化,并结合机器人自身物理属性得到空间平衡点,互补滤波器对传感器单元获得的信号数据进行滤波得到倾斜角;根据平衡点获得自平衡机器人的状态方程,根据状态方程并结合加权矩阵和倾斜角,通过深度学习网络对线性二次型调节器进行模型训练以获得训练后的线性二次型调节器;根据目标倾斜角与训练后的线性二次型调节器获得自平衡机器人的目标姿态调整数据以控制自平衡机器人。本申请解决了现有技术中的两轮自平衡机器人控制效果不好,鲁棒性较差的技术问题。

    基于深度学习的自平衡机器人设计方法及系统

    公开(公告)号:CN118170035A

    公开(公告)日:2024-06-11

    申请号:CN202410607166.3

    申请日:2024-05-16

    Abstract: 本发明提供一种基于深度学习的自平衡机器人设计方法及系统,方法包括:根据自平衡机器人的三维数据进行数学建模;根据欧拉拉格朗日运动方程以对三个方向的欧拉拉格朗日运动方程进行线性化,并结合机器人自身物理属性得到空间平衡点,互补滤波器对传感器单元获得的信号数据进行滤波得到倾斜角;根据平衡点获得自平衡机器人的状态方程,根据状态方程并结合加权矩阵和倾斜角,通过深度学习网络对线性二次型调节器进行模型训练以获得训练后的线性二次型调节器;根据目标倾斜角与训练后的线性二次型调节器获得自平衡机器人的目标姿态调整数据以控制自平衡机器人。本申请解决了现有技术中的两轮自平衡机器人控制效果不好,鲁棒性较差的技术问题。

    一种基于图拓扑学习的AI生成图像检测方法

    公开(公告)号:CN119048843A

    公开(公告)日:2024-11-29

    申请号:CN202411508410.7

    申请日:2024-10-28

    Applicant: 南昌大学

    Abstract: 本发明提供了一种基于图拓扑学习的AI生成图像检测方法,涉及图像处理技术领域。基于图拓扑学习的AI生成图像检测方法包括以下步骤:基于冻结的CLIP提取多张图像样本的全局视觉特征;基于所述多张图像样本构建图拓扑结构,基于图卷积网络获取图拓扑结构中节点之间的关系特征;进行拼接融合获得节点特征向量,并输送到线性层进行真假分类预测获得检测结果;基于度量学习损失函数更新图卷积网络的参数,基于二元交叉熵损失更新线性层的参数。本发明根据CLIP的视觉特征设计了一种难样本区分的图拓扑结构,将图拓扑的特征输入到图卷积网络中进行特征学习,进一步丰富和增强了特征表示的判别力,提升了检测时的准确性和泛化性。

    一种基于图拓扑学习的AI生成图像检测方法

    公开(公告)号:CN119048843B

    公开(公告)日:2025-03-18

    申请号:CN202411508410.7

    申请日:2024-10-28

    Applicant: 南昌大学

    Abstract: 本发明提供了一种基于图拓扑学习的AI生成图像检测方法,涉及图像处理技术领域。基于图拓扑学习的AI生成图像检测方法包括以下步骤:基于冻结的CLIP提取多张图像样本的全局视觉特征;基于所述多张图像样本构建图拓扑结构,基于图卷积网络获取图拓扑结构中节点之间的关系特征;进行拼接融合获得节点特征向量,并输送到线性层进行真假分类预测获得检测结果;基于度量学习损失函数更新图卷积网络的参数,基于二元交叉熵损失更新线性层的参数。本发明根据CLIP的视觉特征设计了一种难样本区分的图拓扑结构,将图拓扑的特征输入到图卷积网络中进行特征学习,进一步丰富和增强了特征表示的判别力,提升了检测时的准确性和泛化性。

    一种基于深度学习的铜合金元件质量检测方法

    公开(公告)号:CN119444673A

    公开(公告)日:2025-02-14

    申请号:CN202411414591.7

    申请日:2024-10-11

    Applicant: 南昌大学

    Abstract: 本发明提供了一种基于深度学习的铜合金元件质量检测方法,S1:通过激光扫描进行铜合金元件初始点云数据的采集;S2:使用双边滤波算法对采集数据预处理,得到去噪后的铜合金元件点云数据;S3:基于深度学习对铜合金元件进行尺寸检测分类,得到尺寸检测结果;S4:尺寸合格的铜合金元件进入表面缺陷检测,在表面缺陷检测中,对YOLOv7网络模型进行改进,对其进行轻量化处理的同时增加注意力机制,基于改进后的YOLOv7网络模型进行表面缺陷检测得到检测结果。本发明使用深度学习来检测铜合金元件的表面质量检测和尺寸质量检测。在表面质量检测方面,在原始的YOLOv7上进行了针对性改进,使得网络可以更加适应小尺寸和尺度变化较大的缺陷,且更加容易部署。

Patent Agency Ranking