一种大尺寸高热导率III族氮化物外延材料的制备方法

    公开(公告)号:CN117646275A

    公开(公告)日:2024-03-05

    申请号:CN202410126764.9

    申请日:2024-01-30

    Applicant: 北京大学

    Abstract: 本发明公开了一种大尺寸高热导率III族氮化物外延材料的制备方法,利用功能层和支撑层的键合衬底,先在功能层正面生长多晶金刚石,然后去掉支撑层,在功能层背面生长III族氮化物外延材料,获得多晶金刚石与III族氮化物材料的异质集成结构。III族氮化物、功能层、多晶金刚石三者之间是直接生长成键连接,确保了声子的传播,并充分利用多晶金刚石高热导率的优点提高了整个异质集成结构的热导率;III族氮化物外延材料生长在复合衬底之上,不会受到破坏,保证了其性能;通过选取不同的键合衬底表面,可以控制生长金属极性或氮极性的III族氮化物材料,满足不同领域应用需求。本发明的制备方法对尺寸没有限制,可以实现大尺寸批量化的生产。

    一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法

    公开(公告)号:CN116590795A

    公开(公告)日:2023-08-15

    申请号:CN202310604790.3

    申请日:2023-05-25

    Applicant: 北京大学

    Abstract: 本发明公开了一种利用陶瓷衬底生长单晶GaN自支撑衬底的方法,首先在在陶瓷衬底表面沉积填充材料,通过研磨抛光获得光滑表面;然后在表面形成二维材料层,并进行等离子体处理和/或原位NH3处理;接着生长单晶GaN厚膜材料,最后将单晶GaN厚膜材料从陶瓷衬底上分离,形成GaN自支撑衬底。该方法充分利用了陶瓷衬底与GaN热膨胀系数匹配的优点,并利用二维材料层为GaN的生长提供有序的六方结构,通过等离子体处理和/或NH3处理解决了二维材料表面难成核和外延层存在两种面内取向的问题,实现了高质量GaN自支撑衬底的制备。基于引入的二维材料层,可采用剥离技术将单晶GaN厚膜材料从陶瓷衬底上分离下来,基于成熟的产业链还可以实现大尺寸、低成本的晶圆级制造。

    一种增强型氮化镓基电子器件及其制备方法

    公开(公告)号:CN116314282A

    公开(公告)日:2023-06-23

    申请号:CN202310594594.2

    申请日:2023-05-25

    Applicant: 北京大学

    Abstract: 本发明公开了一种增强型氮化镓基电子器件及其制备方法,通过在GaN缓冲层生长完成后将栅极区域刻蚀为“V”型槽形成半极性面或非极性面,削弱GaN极化效应,并结合薄Al(In,Ga)N势垒层进一步降低残余极化效应,实现栅极区域2DEG的本征完全耗尽,且在栅极介质淀积后也达到完全没有或者极低二维电子气浓度,实现阈值电压的有效正向提升;在栅极与源极以及栅极与漏极之间的access区域为薄Al(In,Ga)N势垒层与全极性面(c面)GaN异质结构,通过钝化介质层恢复得到高浓度2DEG。本发明能够实现更高阈值电压的增强型GaN基电子器件,有效降低刻蚀带来的界面态问题,显著提升器件栅极可靠性,并能有效提高工艺重复性和成品率,推动GaN基功率电子器件的产业化进程。

    一种降低硅基氮化镓材料中镓扩散引起的射频损耗的方法

    公开(公告)号:CN113725068A

    公开(公告)日:2021-11-30

    申请号:CN202110870325.5

    申请日:2021-07-30

    Applicant: 北京大学

    Abstract: 本发明公开了一种降低硅基氮化镓材料中镓扩散引起的射频损耗的方法。在高阻硅衬底上进行外延生长前,通过预先进行的一炉AlN生长,对反应室中喷淋头和石墨盘等用AlN进行覆盖,从而有效阻挡了残余Ga向硅衬底中的扩散,进而降低了硅衬底和外延层界面处因Ga杂质引入的空穴造成的寄生电导,降低了硅基氮化镓射频器件的射频损耗。本发明方法能够有效抑制GaN材料在硅衬底上的外延过程中因残余Ga向硅衬底扩散带来的射频损耗,将对提高硅基氮化镓射频器件的性能发挥重要作用。

    一种在任意自支撑衬底上生长单晶氮化镓薄膜的方法

    公开(公告)号:CN113206003A

    公开(公告)日:2021-08-03

    申请号:CN202110370494.2

    申请日:2021-04-07

    Applicant: 北京大学

    Abstract: 本发明公开了一种在任意自支撑衬底上生长单晶氮化镓薄膜的方法,首先在任意自支撑衬底上沉积氮化物层,然后将单晶六方结构二维材料(如石墨烯)转移至氮化物层上,形成氮化物和六方结构二维材料复合缓冲层,然后进行AlN的成核以及GaN的外延生长,形成大面积连续GaN单晶薄膜。该方法基于氮化物和六方结构二维材料复合缓冲层,无需利用单晶同质强极性AlN或GaN衬底,也无需对二维材料表面进行破坏性处理形成悬挂键,工艺简单,可重复性好,实现了在任意自支撑衬底上生长单晶GaN薄膜,可用于制作GaN基大功率器件和柔性器件。

    一种在Si(100)衬底上生长单晶氮化镓薄膜的方法

    公开(公告)号:CN108878265B

    公开(公告)日:2021-01-26

    申请号:CN201810714565.4

    申请日:2018-07-03

    Applicant: 北京大学

    Abstract: 本发明公开了一种在Si(100)衬底上生长单晶氮化镓薄膜的方法,包括:在Si(100)衬底上形成非晶SiO2层;将单晶石墨烯转移至Si(100)/SiO2衬底上;对单晶石墨烯表面进行预处理,产生悬挂键;生长AlN成核层;外延生长GaN薄膜。由于Si(100)表面重构产生两种悬挂键,导致氮化物生长时晶粒面内取向不一致而不能形成单晶,本发明以非晶SiO2层屏蔽衬底表面的两种悬挂键信息,并由石墨烯提供氮化物外延生长所需的六方模板,外延得到了连续均匀的高质量GaN单晶薄膜,为GaN基器件与Si基器件的整合集成奠定了良好的基础。

    半导体异质结构及半导体器件

    公开(公告)号:CN111009579A

    公开(公告)日:2020-04-14

    申请号:CN201811166561.3

    申请日:2018-10-08

    Abstract: 本发明提供半导体异质结构及半导体器件,所述半导体异质结构包括,衬底;成核层,设置于衬底上;缓冲层,缓冲层至少包括一第一缓冲层和一第二缓冲层,第一缓冲层设置于成核层上,第二缓冲层,设置于第一缓冲层上;一沟道层,设置于第一缓冲层上;以及一势垒层,设置于沟道层上;其中,第一缓冲层具有第一掺杂浓度,第二缓冲层具有第二掺杂浓度,第一掺杂浓度大于第二掺杂浓度。利用本发明,在半导体异质结构中引入至少两种不同掺杂浓度缓冲层,可同时兼顾高阻缓冲层电阻率与沟道层晶体质量的要求,不仅制备简单,而且可大幅降低沟道层的缺陷密度,提高半导体异质结构的晶体质量,改善其电流崩坍效应,可应用于低成本的高频、高功率器件的研制。

    化合物半导体中替代阳离子位置的杂质缺陷浓度的检测方法

    公开(公告)号:CN109632855A

    公开(公告)日:2019-04-16

    申请号:CN201811358362.2

    申请日:2018-11-15

    Applicant: 北京大学

    Abstract: 本发明公布了一种化合物半导体中替代阳离子位置的杂质缺陷浓度的检测方法。首先制备用于确定化合物半导体中替代阳离子位置的杂质缺陷浓度的原生样品,然后将部分原生样品进行退火操作,制得退火样品;利用高温退火操作实现替代阳离子位置的杂质发生从阳离子位置到阴离子位置或间隙位置的转变,进而通过正电子湮没谱技术的多普勒展宽谱测量化合物半导体原生样品和退火样品中的阳离子空位浓度的差异,最终确定化合物半导体中替代阳离子位置的杂质缺陷浓度。本发明方法简单且快捷有效,能够精确地确定化合物半导体中替代阳离子位置的杂质缺陷浓度,对于研究化合物半导体材料中的替代阳离子位置的杂质缺陷浓度及其对器件应用的影响将发挥重要的作用。

    一种硅上高迁移率GaN基异质结构及其制备方法

    公开(公告)号:CN104576714A

    公开(公告)日:2015-04-29

    申请号:CN201510037027.2

    申请日:2015-01-23

    Applicant: 北京大学

    Abstract: 本发明提供了一种硅衬底上高迁移率GaN基异质结构及其制备方法,属于半导体技术领域。该GaN基异质结构为层状叠加结构,从下向上的材料依次为:硅衬底、成核层、应力和缺陷控制层、外延层、沟道层、插入层和势垒层,其中应力和缺陷控制层为AlGaN层,其厚度为10nm-10μm;且Al摩尔组分为1-26%。与现有的较繁琐的硅上GaN基异质结构外延技术相比,本发明可以大幅降低缺陷密度,提高异质结构材料的晶体质量,十分适合于低成本的高频、高功率器件的研制。

Patent Agency Ranking