一种在Si(100)衬底上生长单晶氮化镓薄膜的方法

    公开(公告)号:CN108878265B

    公开(公告)日:2021-01-26

    申请号:CN201810714565.4

    申请日:2018-07-03

    Applicant: 北京大学

    Abstract: 本发明公开了一种在Si(100)衬底上生长单晶氮化镓薄膜的方法,包括:在Si(100)衬底上形成非晶SiO2层;将单晶石墨烯转移至Si(100)/SiO2衬底上;对单晶石墨烯表面进行预处理,产生悬挂键;生长AlN成核层;外延生长GaN薄膜。由于Si(100)表面重构产生两种悬挂键,导致氮化物生长时晶粒面内取向不一致而不能形成单晶,本发明以非晶SiO2层屏蔽衬底表面的两种悬挂键信息,并由石墨烯提供氮化物外延生长所需的六方模板,外延得到了连续均匀的高质量GaN单晶薄膜,为GaN基器件与Si基器件的整合集成奠定了良好的基础。

    化合物半导体中替代阳离子位置的杂质缺陷浓度的检测方法

    公开(公告)号:CN109632855A

    公开(公告)日:2019-04-16

    申请号:CN201811358362.2

    申请日:2018-11-15

    Applicant: 北京大学

    Abstract: 本发明公布了一种化合物半导体中替代阳离子位置的杂质缺陷浓度的检测方法。首先制备用于确定化合物半导体中替代阳离子位置的杂质缺陷浓度的原生样品,然后将部分原生样品进行退火操作,制得退火样品;利用高温退火操作实现替代阳离子位置的杂质发生从阳离子位置到阴离子位置或间隙位置的转变,进而通过正电子湮没谱技术的多普勒展宽谱测量化合物半导体原生样品和退火样品中的阳离子空位浓度的差异,最终确定化合物半导体中替代阳离子位置的杂质缺陷浓度。本发明方法简单且快捷有效,能够精确地确定化合物半导体中替代阳离子位置的杂质缺陷浓度,对于研究化合物半导体材料中的替代阳离子位置的杂质缺陷浓度及其对器件应用的影响将发挥重要的作用。

    一种抑制硅基氮化镓射频器件的射频损耗的方法

    公开(公告)号:CN110211867A

    公开(公告)日:2019-09-06

    申请号:CN201910429057.6

    申请日:2019-05-22

    Applicant: 北京大学

    Abstract: 本发明公开了一种抑制硅基氮化镓射频器件的射频损耗的方法,在外延层生长之前预通氨气,对硅衬底进行氮化预处理,在硅衬底上形成一层无定形的氮化硅薄膜,从而形成一个铝原子扩散的壁垒,这个壁垒阻挡了铝原子扩散,从而降低了外延生长后硅衬底的导电能力,使其维持在高阻状态,减小了射频器件工作时候的射频损耗。本发明对硅衬底的通氨气氮化预处理所用时间为秒级,几乎不占用工厂的机时,有利于工业生产控制成本。

    一种InxAlyGa1-x-yN/GaN异质结构及其外延方法

    公开(公告)号:CN106601787B

    公开(公告)日:2020-06-26

    申请号:CN201611087469.9

    申请日:2016-12-01

    Applicant: 北京大学

    Abstract: 本发明公布了一种高电学性能InxAlyGa1‑x‑yN/GaN异质结构外延方法,是在生长一层GaN外延层后,在其上生长GaN沟道层;然后停止生长,将温度降至低温,即600‑900℃温度范围内;待温度稳定后生长低温AlN插入层;随后再生长InxAlyGa1‑x‑yN势垒层,形成InxAlyGa1‑x‑yN/GaN异质结构。与现有的高温AlN插入层技术相比,本发明改为低温AlN插入层,避免了GaN外延层在高温AlN插入层生长环境下的表面退化,降低了界面的粗糙度,提高了异质结构材料的界面质量,进而提高2DEG的迁移率,十分适合于高频、高功率器件的研制。

    一种In<sub>x</sub>Al<sub>y</sub>Ga<sub>1‑x‑y</sub>N/GaN异质结构外延方法

    公开(公告)号:CN106601787A

    公开(公告)日:2017-04-26

    申请号:CN201611087469.9

    申请日:2016-12-01

    Applicant: 北京大学

    Abstract: 本发明公布了一种高电学性能InxAlyGa1‑x‑yN/GaN异质结构外延方法,是在生长一层GaN外延层后,在其上生长GaN沟道层;然后停止生长,将温度降至低温,即600‑900℃温度范围内;待温度稳定后生长低温AlN插入层;随后再生长InxAlyGa1‑x‑yN势垒层,形成InxAlyGa1‑x‑yN/GaN异质结构。与现有的高温AlN插入层技术相比,本发明改为低温AlN插入层,避免了GaN外延层在高温AlN插入层生长环境下的表面退化,降低了界面的粗糙度,提高了异质结构材料的界面质量,进而提高2DEG的迁移率,十分适合于高频、高功率器件的研制。

    化合物半导体中替代阳离子位置的杂质缺陷浓度的检测方法

    公开(公告)号:CN109632855B

    公开(公告)日:2020-05-05

    申请号:CN201811358362.2

    申请日:2018-11-15

    Applicant: 北京大学

    Abstract: 本发明公布了一种化合物半导体中替代阳离子位置的杂质缺陷浓度的检测方法。首先制备用于确定化合物半导体中替代阳离子位置的杂质缺陷浓度的原生样品,然后将部分原生样品进行退火操作,制得退火样品;利用高温退火操作实现替代阳离子位置的杂质发生从阳离子位置到阴离子位置或间隙位置的转变,进而通过正电子湮没谱技术的多普勒展宽谱测量化合物半导体原生样品和退火样品中的阳离子空位浓度的差异,最终确定化合物半导体中替代阳离子位置的杂质缺陷浓度。本发明方法简单且快捷有效,能够精确地确定化合物半导体中替代阳离子位置的杂质缺陷浓度,对于研究化合物半导体材料中的替代阳离子位置的杂质缺陷浓度及其对器件应用的影响将发挥重要的作用。

    一种半导体异质结构制备方法及其用途

    公开(公告)号:CN111009468A

    公开(公告)日:2020-04-14

    申请号:CN201811166674.3

    申请日:2018-10-08

    Abstract: 本发明提供一种半导体异质结构制备方法及其用途,所述制备方法包括,提供一衬底;于衬底上形成一成核层;于成核层上形成第一缓冲层;于第一缓冲层上形成第二缓冲层;于第一缓冲层上形成一沟道层;于沟道层上形成一势垒层,势垒层和沟道层构成异质结构;其中,第一缓冲层具有第一掺杂浓度,第二缓冲层具有第二掺杂浓度,第一掺杂浓度大于第二掺杂浓度。利用本发明,在半导体异质结构中引入至少两种掺杂浓度缓冲层,能同时兼顾高阻缓冲层电阻率与沟道层晶体质量的要求,不仅制备简单,而且可大幅降低沟道层的缺陷密度,提高半导体异质结构的晶体质量,改善器件击穿电压和电流崩坍效应,可应用于低成本的高频、高功率器件的研制。

    基于纳米图形硅衬底制备高质量厚膜AlN的方法

    公开(公告)号:CN109103070A

    公开(公告)日:2018-12-28

    申请号:CN201810801132.2

    申请日:2018-07-20

    Applicant: 北京大学

    Abstract: 本发明公开了一种基于纳米图形硅衬底制备高质量厚膜AlN的方法,通过该方法获得的层状叠加AlN材料,从下向上依次为:纳米图形硅衬底、纳米图形AlN成核层、高温AlN横向生长层和高温AlN纵向生长层,在纳米图形硅衬底、纳米图形AlN成核层和高温AlN横向生长层中具有周期性排布的空气隙,所述空气隙在Si衬底中的深度为10nm~1μm,其横截面最大宽度为50nm~1μm,周期为100nm~2μm。与现有生长厚膜AlN的方法相比,本发明成本低廉,可被大规模产业化应用,大幅降低硅衬底上AlN的缺陷密度,提高后续器件结构材料的晶体质量,在垂直结构的UV-LED器件、微机电系统、发光二极管、射频滤波器以及声表面波器件制造和高频宽带通信等领域有着广阔的应用前景。

Patent Agency Ranking