一种神经网络结构化渐进剪枝方法及系统

    公开(公告)号:CN113516240A

    公开(公告)日:2021-10-19

    申请号:CN202110697462.3

    申请日:2021-06-23

    Abstract: 本发明涉及计算机视觉领域,涉及一种神经网络结构化渐进剪枝方法和系统,该方法包括:步骤S1:设定神经网络每层的裁剪率、剪枝标准及神经网络训练周期数;步骤S2:输入图片以训练神经网络,在一定训练周期内,每层裁剪率从零逐渐增加到设定的裁剪率,根据剪枝标准,确定每层的冗余信息并置为0;步骤S3:达到设定的裁剪率后,移除神经网络中的冗余信息,并重构原始的网络层;步骤S4:神经网络重构后,继续进行训练,直至达到设定的神经网络训练周期。本发明操作简单,步骤少,在正常神经网络训练过程中就能到达剪枝的目的,而且无需剪枝后的精调过程,因此可以大幅减少处理时间,相比现有技术在达到较高的裁剪率的同时能获得较高的性能。

    一种基于预训练扩散概率模型的曲面高效重建方法和装置

    公开(公告)号:CN117635679A

    公开(公告)日:2024-03-01

    申请号:CN202311654298.3

    申请日:2023-12-05

    Abstract: 本发明公开了一种基于预训练扩散概率模型的曲面高效重建方法和装置,属于精密测量和图像处理领域,包括:标定包含高精度接触式探针和光度立体视觉装置的测量系统的相对位姿关系;采用测量系统对待测曲面进行测量,得到稀疏点云数据和稠密法向量图;基于预训练的扩散概率模型将稠密法向量图转换为多尺度法向量特征;将稀疏点云数据转换为稀疏深度图,将稀疏深度图和多尺度法向量特征输入基于引导卷积的融合模块,得到高精度稠密深度图,完成高精度曲面重构。本发明采用扩散概率模型获得多尺度法向量特征,再将多尺度法向量特征和稀疏深度图输入融合模块,仅需以少量的真值样本作为监督,即可实现高效高精度的曲面重构。

    一种基于对比知识蒸馏的图像识别方法和装置

    公开(公告)号:CN117557847A

    公开(公告)日:2024-02-13

    申请号:CN202311520256.0

    申请日:2023-11-15

    Abstract: 本发明公开了一种基于对比知识蒸馏的图像识别方法和装置,包括获取带有类别标签的训练图像样本;利用训练图像样本对第一神经网络分类模型进行基于类别标签的监督学习训练,将训练图像样本输入至训练后的第一神经网络分类模型得到第一嵌入特征表达和对应的第一分类软标签;将训练图像样本输入至第二神经网络分类模型得到第二嵌入特征表达及对应的第二分类软标签,基于第一嵌入特征表达和第二嵌入特征表达计算对比蒸馏损失,基于第一分类软标签和第二分类软标签计算KL散度损失,对比蒸馏损失和KL散度损失联合图像识别任务损失更新第二神经网络分类模型的参数,更新后的第二神经网络分类模型作为图像识别模型用于图像识别。

    一种基于多元损失融合的植物叶片细粒度识别方法和系统

    公开(公告)号:CN117011718B

    公开(公告)日:2024-02-02

    申请号:CN202311288015.8

    申请日:2023-10-08

    Abstract: 据中。一种基于多元损失融合的植物叶片细粒度识别方法和系统,首先将植物叶片图像以九宫格的方式进行随机掩码完成图像增强,并与原图成对地输入到特征提取网络模型中,得到特征向量;将特征向量输入分类网络层中,并进行品种识别;将特征向量输入到对抗网络层中,进行二分类识别;将掩码图的特征向量输入到自编码网络模块中,进行图像复原的自监督学习;三项任务的损失函数共同监督并指导网络的训练;在自监督任务中掩码图像通过学习复原本身位置使特征提取网络关注到叶片局部特征,而原图在品(56)对比文件王泽宇 等.基于多模态特征的无监督领域自适应多级对抗语义分割网络《.通信学报》.2022,第43卷(第12期),157-171.齐爱玲 等.基于中层细微特征提取与多尺度特征融合细粒度图像识别《.计算机应用》.2023,第43卷(第8期),2556-2563.Gang Li 等.Self-supervised VisualRepresentation Learning for Fine-GrainedShip Detection《.2021 IEEE 4thInternational Conference on InformationSystems and Computer Aided Education(ICISCAE)》.2021,67-71.

    一种基于稀疏重建的大豆植株表型提取方法及系统

    公开(公告)号:CN116817754B

    公开(公告)日:2024-01-02

    申请号:CN202311082530.0

    申请日:2023-08-28

    Abstract: 一种基于稀疏重建的大豆植株表型提取方法及系统,其方法包括:对大豆植株进行多视角成像,通过密度图估计在各视图中提取植株二维关键点,包括端点关键点、节点关键点和豆粒关键点,同时通过亲和力场估计给出同一豆荚中豆粒关联关系,基于对称极线距离和二分匹配,关联各视图中的同一关键点和同一豆荚,进而通过三角测量计算各关键点的三维坐标,用于测量株高、统计豆粒的空间分布、计算节数、单株粒数和荚数等。本发明可精准且高效的提取大豆植株表型,具有较高的可行性和实用性。(56)对比文件Haoran Zhao等.Exploring BetterSpeculation and Data Locality in SparseMatrix-Vector Multiplication on IntelXeon.2020 IEEE 38th InternationalConference on Computer Design.2020,全文.Yourui Huang等.Low IlluminationSoybean Plant Reconstruction and TraitPerception.Agriculture.2022,第12卷(第12期),第2.1-2.3节.李晨雨.基于三维重建的大豆植株叶面积自动测量方法的研究.中国优秀硕士学位论文全文数据库 农业科技辑.2023,(第1期),全文.

    一种基于频域变换增强的表型预测方法和装置

    公开(公告)号:CN117174161A

    公开(公告)日:2023-12-05

    申请号:CN202311078766.7

    申请日:2023-08-25

    Abstract: 本发明公开了一种基于频域变换增强的表型预测方法,包括:获取不同作物植株的基因数据和表型数据并对其进行预处理;对预处理后的基因数据进行数值映射;对数值映射后的基因序列进行离散傅里叶变换,判断每个窗口是否为蛋白质编码区,并根据判断结果对蛋白质编码区进行特征增强;将特征增强后的基因序列进行处理,采用低频特征、高频去噪后的特征、小波逆变换后的低频特征以及作为标签的预处理后的表型数据对三流网络进行优化训练;将待检测基因序列的特征输入到训练好的三流网络中,输出表型预测结果。本发明还公开了一种基于频域变换增强的表型预测装置。本发明利用基因编码区的先验提高表型预测效果,实现时频上的基因到表型的非线性关系。

    一种基于rPPG生理信号的人脸视频鉴伪方法和装置

    公开(公告)号:CN115953822A

    公开(公告)日:2023-04-11

    申请号:CN202310202394.8

    申请日:2023-03-06

    Abstract: 本发明公开一种基于rPPG生理信号的人脸视频鉴伪方法和装置,该方法包括以下步骤:步骤一:采集人脸视频与手指PPG信号,构建PPG信号视频数据集;搜集真实人脸视频与伪造人脸视频,构建鉴伪数据集;步骤二:使用PPG信号视频数据集作为训练数据,训练得到rPPG信号提取网络;步骤三:使用鉴伪数据集,利用步骤二训练得到的rPPG信号提取网络提取rPPG信号,后输入二元决策网络并进行网络训练;步骤四:使用通过步骤二训练获得的rPPG信号提取网络和步骤三训练获得的二元决策网络,对待检测的视频进行真伪判断。本发明使用难以伪造的rPPG生理信号用于分辨人脸伪造合成视频,可以有效提升判断准确率。

Patent Agency Ranking