一种大型展厅多相机监控系统内外参标定方法和系统

    公开(公告)号:CN117252930B

    公开(公告)日:2024-05-28

    申请号:CN202311222096.1

    申请日:2023-09-21

    Abstract: 本发明公开了一种大型展厅多相机监控系统内外参标定方法和系统,包括以下步骤:获取多相机视频数据作为标定数据;对标定数据进行预处理;进行单目相机标定得到相机内参初值;使用链式法进行相机外参初步估计得到每个相机相对于世界坐标系的位姿作为相机外参初值;进行标定板位姿初步估计得到每个特定姿态下的标定板位姿初值;构造总重投影误差作为目标函数并引入基于畸变参数的正则项;使用相机内参初值、相机外参初值和标定位板位姿初值,最小化带有正则项的目标函数以求解全局优化问题,得到最优相机内外参数。本发明能够减小人工成本和风险,提高相机内外参标定的准确性,适用于高空悬挂或处于开阔空间中的多相机系统内外参标定应用场景。

    一种基于图像知识回顾的深度卷积神经网络自蒸馏方法

    公开(公告)号:CN114022727B

    公开(公告)日:2024-04-26

    申请号:CN202111221950.3

    申请日:2021-10-20

    Abstract: 本发明公开了本发明公开一种基于图像知识回顾的深度卷积神经网络自蒸馏方法,该方法首先针对目标网络设置辅助网络,在目标网络的下采样层引出分支,采用知识回顾的思路依次融合和连接各个分支,在训练过程中,通过监督学习以及采用目标网络的下采样层向引出分支层进行学习的方式,达到自蒸馏的目的。本发明在深度卷积神经网络自蒸馏领域引入知识回顾的思路,提高了深度卷积神经网络的训练精度;采用辅助网络的形式进行自蒸馏,相对使用数据增强来拉进类内距离的自蒸馏方法,在实际应用中更加简洁方便。

    一种智能识别大豆叶片叶形的方法和系统

    公开(公告)号:CN117593652A

    公开(公告)日:2024-02-23

    申请号:CN202410075345.7

    申请日:2024-01-18

    Abstract: 本发明公开了一种智能识别大豆叶片叶形的方法和系统,方法包括以下步骤:构建包含完整大豆叶片图像的训练集对基于深度卷积神经网络的大豆叶片检测分割模型进行训练,将待检测的大豆叶片图像输入训练好的大豆叶片检测分割模型并输出每张图像中分割出的大豆叶片图像;基于分割出的大豆叶片图像,采用最小外接矩形法计算叶长和叶宽,进而计算得到大豆叶片长宽比;将分割出的大豆叶片图像切分为若干区域,基于大豆叶片长宽比及各区域的叶片像素量判定大豆叶片叶形。本发明能够实现对大豆叶片叶形的自动高效识别,识别精度和速度高,适用于智能识别大豆品种等实战部署场景。

Patent Agency Ranking