-
公开(公告)号:CN117011316B
公开(公告)日:2024-02-06
申请号:CN202311278665.4
申请日:2023-10-07
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/11 , G06T7/00 , G06T5/70 , G06T3/4053 , G06T7/62
Abstract: 一种基于CT图像的大豆茎秆内部结构辨识方法和系统,该方法包括:步骤一,将大豆盆栽放入植物CT采集设备,利用micro‑CT设备对大豆植株进行从上而下的扫描,得到采集的大豆茎秆CT图像数据;步骤二,对采集的CT图像数据集进行数据增强,引入扩散模型对数据进行超分辨处理,获取更丰富的组织细节信息;步骤三,对CT图像进行分割,得到大豆茎秆内部的组织结构的分割图;步骤四,根据分割结果进行体积重建,获得网格化数据,获得分割区域的体积、表面积等参数。本发明利用CT技术对大豆全生命周期的茎秆内部组织进行捕获,避免了传统破坏式捕获大豆植株内部信息,能有效提升大豆植株茎秆内部结
-
公开(公告)号:CN116992919A
公开(公告)日:2023-11-03
申请号:CN202311269915.8
申请日:2023-09-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06N3/042 , G06N3/0464 , G06N3/0499 , G06N3/084 , G16B40/00 , G06F18/213 , G06F18/22
Abstract: 本发明公开了一种基于多组学的植物表型预测方法和装置,该方法基于图卷积神经网络,将多组学如基因组、转录组、代谢组的数据作为图节点,不同组学之间的关联程度作为图的边来构建每个植株的图结构数据,将构建的图结构数据输入图卷积神经网络中,提取节点特征,通过Transformer网络更新节点特征,节点特征拼接后输入全连接层,输出表型预测值,利用整个图结构融合多组学特征实现表型的预测。本发明创新性的利用图卷积神经网络结合Transformer网络实现基因到表型的预测,并利用多组学构建图结构融合多组学数据实现精准表型预测,在一定程度上解决只用单一组学表型预测不准的问题,提高了表型预测的效果。
-
公开(公告)号:CN116703820B
公开(公告)日:2024-05-03
申请号:CN202310406884.X
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/00 , G06T7/70 , G06N3/0464 , G06N3/084 , G06V10/82 , G06V10/774
Abstract: 一种基于热力图的高密度豆粒计数及中心点定位方法,用高斯函数生成高斯核模板,结合已标记的豆粒中心点位置,生成用于豆粒计数的真值热力图;采用基于空洞卷积的CSRNet作为密度图估计模块,将原始图像与真值热力图输入到模型中计算得到与原始图像同大小的热力图,通过对比预测热力图与真值热力图的L2损失进行参数的学习,实现高质量的热力图估计。对于待测试图像,使用CSRNet预测热力图,再通过判断局部最大位置点,从热力图中获取得到所有中心点的位置坐标,并通过局部中心点热力图的值取整获得豆粒数。还包括一种基于热力图的高密度豆粒计数及中心点定位系统。本发明可提高豆粒计数模型在高密度、遮挡严重场景下的计数准确性。
-
公开(公告)号:CN117058492B
公开(公告)日:2024-02-27
申请号:CN202311322535.6
申请日:2023-10-13
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V10/774 , G06V10/764 , G06V10/82 , G06V20/70 , G06N3/09 , G06N5/04
Abstract: 一种基于学习解耦的两阶段训练病害识别方法和系统,其方法包括:步骤S1:采集待识别作物的图像样本,制作训练数据集;步骤S2:构造基于学习解耦的分类算法网络模型;步骤S3:对基于学习解耦的分类算法模型进行一阶段训练;步骤S4:固定部分权重,对基于学习解耦的分类算法模型进行二阶段训练;步骤S5:基于训练得到的基于学习解耦的分类算法模型进行推理,最终得到待分类目标叶片的病害种类和病害等级。本发明具有准确度高,标注成本极低,且可实现单模型对病害种类和病害等级进行细分类识别。
-
公开(公告)号:CN117011718B
公开(公告)日:2024-02-02
申请号:CN202311288015.8
申请日:2023-10-08
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V20/10 , G06V10/764 , G06V10/42 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/0895 , G06N3/094
Abstract: 据中。一种基于多元损失融合的植物叶片细粒度识别方法和系统,首先将植物叶片图像以九宫格的方式进行随机掩码完成图像增强,并与原图成对地输入到特征提取网络模型中,得到特征向量;将特征向量输入分类网络层中,并进行品种识别;将特征向量输入到对抗网络层中,进行二分类识别;将掩码图的特征向量输入到自编码网络模块中,进行图像复原的自监督学习;三项任务的损失函数共同监督并指导网络的训练;在自监督任务中掩码图像通过学习复原本身位置使特征提取网络关注到叶片局部特征,而原图在品(56)对比文件王泽宇 等.基于多模态特征的无监督领域自适应多级对抗语义分割网络《.通信学报》.2022,第43卷(第12期),157-171.齐爱玲 等.基于中层细微特征提取与多尺度特征融合细粒度图像识别《.计算机应用》.2023,第43卷(第8期),2556-2563.Gang Li 等.Self-supervised VisualRepresentation Learning for Fine-GrainedShip Detection《.2021 IEEE 4thInternational Conference on InformationSystems and Computer Aided Education(ICISCAE)》.2021,67-71.
-
公开(公告)号:CN116817754B
公开(公告)日:2024-01-02
申请号:CN202311082530.0
申请日:2023-08-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G01B11/00 , G01B11/02 , G01N21/84 , G06V20/60 , G06V10/10 , G06V10/44 , G06V10/50 , G06V10/75 , G06V10/82
Abstract: 一种基于稀疏重建的大豆植株表型提取方法及系统,其方法包括:对大豆植株进行多视角成像,通过密度图估计在各视图中提取植株二维关键点,包括端点关键点、节点关键点和豆粒关键点,同时通过亲和力场估计给出同一豆荚中豆粒关联关系,基于对称极线距离和二分匹配,关联各视图中的同一关键点和同一豆荚,进而通过三角测量计算各关键点的三维坐标,用于测量株高、统计豆粒的空间分布、计算节数、单株粒数和荚数等。本发明可精准且高效的提取大豆植株表型,具有较高的可行性和实用性。(56)对比文件Haoran Zhao等.Exploring BetterSpeculation and Data Locality in SparseMatrix-Vector Multiplication on IntelXeon.2020 IEEE 38th InternationalConference on Computer Design.2020,全文.Yourui Huang等.Low IlluminationSoybean Plant Reconstruction and TraitPerception.Agriculture.2022,第12卷(第12期),第2.1-2.3节.李晨雨.基于三维重建的大豆植株叶面积自动测量方法的研究.中国优秀硕士学位论文全文数据库 农业科技辑.2023,(第1期),全文.
-
公开(公告)号:CN116817754A
公开(公告)日:2023-09-29
申请号:CN202311082530.0
申请日:2023-08-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G01B11/00 , G01B11/02 , G01N21/84 , G06V20/60 , G06V10/10 , G06V10/44 , G06V10/50 , G06V10/75 , G06V10/82
Abstract: 一种基于稀疏重建的大豆植株表型提取方法及系统,其方法包括:对大豆植株进行多视角成像,通过密度图估计在各视图中提取植株二维关键点,包括端点关键点、节点关键点和豆粒关键点,同时通过亲和力场估计给出同一豆荚中豆粒关联关系,基于对称极线距离和二分匹配,关联各视图中的同一关键点和同一豆荚,进而通过三角测量计算各关键点的三维坐标,用于测量株高、统计豆粒的空间分布、计算节数、单株粒数和荚数等。本发明可精准且高效的提取大豆植株表型,具有较高的可行性和实用性。
-
公开(公告)号:CN116703820A
公开(公告)日:2023-09-05
申请号:CN202310406884.X
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06T7/00 , G06T7/70 , G06N3/0464 , G06N3/084 , G06V10/82 , G06V10/774
Abstract: 一种基于热力图的高密度豆粒计数及中心点定位方法,用高斯函数生成高斯核模板,结合已标记的豆粒中心点位置,生成用于豆粒计数的真值热力图;采用基于空洞卷积的CSRNet作为密度图估计模块,将原始图像与真值热力图输入到模型中计算得到与原始图像同大小的热力图,通过对比预测热力图与真值热力图的L2损失进行参数的学习,实现高质量的热力图估计。对于待测试图像,使用CSRNet预测热力图,再通过判断局部最大位置点,从热力图中获取得到所有中心点的位置坐标,并通过局部中心点热力图的值取整获得豆粒数。还包括一种基于热力图的高密度豆粒计数及中心点定位系统。本发明可提高豆粒计数模型在高密度、遮挡严重场景下的计数准确性。
-
公开(公告)号:CN116721412B
公开(公告)日:2024-05-03
申请号:CN202310406872.7
申请日:2023-04-17
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06V20/68 , G06V10/82 , G06V10/774 , G06V10/776 , G06V10/40 , G06N3/0464 , G06N3/09
Abstract: 一种自下而上的基于结构性先验的豆荚关键点检测方法,自定义不同类型豆荚中豆粒的关键点含义,构建了包含主干网络、豆粒位置置信度热力图子网络、部位亲和域子网络、结构先验子网络四部分的自下而上的豆粒关键点检测网络,可实现先利用位置置信度检测得到所有的豆粒位置,然后结合部位亲和域积分计算,利用匈牙利算法得到豆粒之间的最优匹配连接关系,从而提取到豆荚的数量和豆荚的类型。特别的,在训练阶段通过添加结构先验子网络,提升模型的准确率。还包括一种自下而上的基于结构性先验的豆荚关键点检测系统。本发明从豆荚形态上确定豆荚类型,可快速同时检测多个豆荚,并定位得到豆荚中每个豆粒的位置。
-
公开(公告)号:CN116992919B
公开(公告)日:2023-12-19
申请号:CN202311269915.8
申请日:2023-09-28
Applicant: 之江实验室 , 中国科学院东北地理与农业生态研究所
IPC: G06N3/042 , G06N3/0464 , G06N3/0499 , G06N3/084 , G16B40/00 , G06F18/213 , G06F18/22
Abstract: 本发明公开了一种基于多组学的植物表型预测方法和装置,该方法基于图卷积神经网络,将多组学如基因组、转录组、代谢组的数据作为图节点,不同组学之间的关联程度作为图的边来构建每个植株的图结构数据,将构建的图结构数据输入图卷积神经网络中,提取节点特征,通过Transformer网络更新节点特征,节点特征拼接后输入全连接层,输出表型预测值,利用整个图结构融合多组学特征实现表型的预测。本发明创新性的利用图卷积神经网络结合Transformer网络实现基因到表型的预测,并利用多组学构建图结构融合多组学数据实现精准表型预测,在一定程度上解决只用单一组学表型预测不准的问题,
-
-
-
-
-
-
-
-
-