-
公开(公告)号:CN118333896A
公开(公告)日:2024-07-12
申请号:CN202410272717.5
申请日:2024-03-11
Applicant: 武汉工程大学
Abstract: 本发明公开了一种误差分解网络的全色锐化方法、系统、设备及介质,涉及遥感图像处理技术领域,方法包括:获取目标区域的全色影像和初始分辨率多光谱影像,对初始分辨率多光谱影像进行下采样操作得到低空间分辨率多光谱影像;根据全色锐化的光谱响应理论和全色影像的预设误差项构建分解网络模型,将全色影像输入到分解网络模型中,得到分解后的伪多光谱影像;将低空间分辨率多光谱影像进行上采样操作得到的多光谱影像和伪多光谱影像输入到融合网络模型中,得到最终融合遥感影像。本发明能够避免全色锐化技术存在的光谱响应不重叠现象,全色影像中存在着误差信息对融合遥感影像的干扰等问题。
-
公开(公告)号:CN117953590B
公开(公告)日:2024-07-05
申请号:CN202410354226.5
申请日:2024-03-27
Applicant: 武汉工程大学 , 湖北文理学院 , 中国电力科学研究院有限公司
IPC: G06V40/20 , G06V10/22 , G06V10/764 , G06V10/80 , G06V10/77 , G06V10/82 , G06N3/0455 , G06N3/082
Abstract: 本发明涉及一种三元交互动作检测方法、系统、设备及介质,方法包括:获取待测三元关系交互动作图像;确定待测三元关系交互动作图像的降维特征图;为降维特征图上每个预设区域添加位置信息,确定全局信息图;利用预设的多头注意力机制,将全局信息图和预设的查询规则进行融合,确定预测交互动作信息;将预测交互动作信息转换为三元检测框信息和交互动作类别。解决了现有技术无法对三元交互动作信息进行完整的描述,不仅降低了预测出的该交互动作信息的区域范围的准确性,还降低了该交互动作信息对应的交互动作类别的准确性的问题。
-
公开(公告)号:CN118115884A
公开(公告)日:2024-05-31
申请号:CN202311668886.2
申请日:2023-12-05
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于运动图嵌入的多目标跟踪系统及方法,涉及多目标跟踪技术领域;本发明对分频后的图像按时间进行排序,并进行目标检测得到多帧图像的多个检测结果图像;对检测结果图像进行特征提取,得到特征图像序列;对特征图像序列进行运动信息提取得到表观特征向量和运动特征向量;以表观特征向量为顶点,运动特征向量为边构建运动图;并对运动图进行迭代简化处理,生成运动图中各顶点的提案集合;对提案集合进行评分,得到质量分数;根据质量分数生成提案簇集合,并获得多个短轨迹,将多个短轨迹连接成长跟踪轨迹。本发明通过找到具有运动图代表性的边特征来构建运动图,获得轨迹级别的时间信息,从而提高微小目标跟踪的性能。
-
公开(公告)号:CN117953015A
公开(公告)日:2024-04-30
申请号:CN202410347796.1
申请日:2024-03-26
Applicant: 武汉工程大学 , 中国人民解放军海军工程大学 , 湖北文理学院
IPC: G06T7/246 , G06V40/10 , G06V20/40 , G06T3/4053
Abstract: 本发明公开了基于视频超分辨率多行人跟踪方法、系统、设备及介质,涉及超分辨率领域以及多目标跟踪领域技术领域,方法包括:获取检测区域的视频,对视频进行视频帧插值及超分辨率处理,对每一帧进行目标检测得到检测框,对重叠度满足条件的检测框进行融合;提取检测框的可见区域标签,根据可见区域标签计算当前帧的检测框和前一帧的检测框的特征距离,将特征距离经过匈牙利算法计算得到最终结果,将最终结果整合输出得到行人轨迹。本发明融合了不同视觉任务,能够实现多视觉任务的相互促进,提高了检测与跟踪的性能,解决了多行人跟踪在低质量成像场景下视频帧模糊难以处理、漏检和误检高概率等问题。
-
公开(公告)号:CN112926686B
公开(公告)日:2023-11-17
申请号:CN202110338988.2
申请日:2021-03-30
Applicant: 武汉工程大学
IPC: G06F18/2433 , G06F18/213 , G06F18/214 , G06N3/0442 , G06N5/025 , G06N5/04 , G06Q50/06
Abstract: 本发明公开了一种基于BRB和LSTM模型的电力大数据用电异常检测方法及装置,其中方法具体包括以下步骤:从用电量大数据中提取用户用电量波动特征和用户用电量曲线异常特征;建立置信规则推理BRB系统,对电量波动系数和毛刺宽度总和进行置信度转换;根据置信规则推理BRB系统中的置信规则库,采用证据推理ER算法对比转换后的置信度,得到用户非技术性损失NTL异常性输出结果中每一个参考值的信任程度;用户非技术性损失NTL异常性用电进行标定;在标定数据的基础上建立长短记忆LSTM模型,并使用LSTM模型对异常用电特征进行有效提取与检测,最终准确诊断出NTL异常情况。本发明可有效识别异常用电情况。
-
公开(公告)号:CN111709991B
公开(公告)日:2023-11-07
申请号:CN202010467531.7
申请日:2020-05-28
Applicant: 武汉工程大学 , 武汉引行科技有限公司
IPC: G06T7/70 , G06N3/0464 , G06N3/08
Abstract: 本发明涉及一种铁路工机具的检测方法、系统、装置和存储介质,方法包括获取多个工机具图像,根据所有工机具图像制作数据集;构建深度卷积神经网络,利用数据集和深度卷积神经网络构建反射图像提取网络,根据深度卷积神经网络和反射图像提取网络得到特征检测网络,根据深度卷积神经网络、反射图像提取网络和特征检测网络得到初始检测网络模型;利用数据集对初始检测网络模型进行训练,得到目标检测网络模型;根据目标检测网络模型对待检测工机具图像进行检测,得到检测结果。本发明可有效解决背景复杂、光照不均以及目标尺度差异大、形态复杂和存在遮挡等问题,对铁路工机具进行快速而准确地目标检测,实现铁路工机具的自动清点。
-
公开(公告)号:CN110688368B
公开(公告)日:2023-06-20
申请号:CN201910929085.4
申请日:2019-09-28
Applicant: 武汉工程大学
Inventor: 陈灯 , 张哲泓 , 魏巍 , 张彦铎 , 李晓林 , 鞠剑平 , 唐剑影 , 刘玮 , 段功豪 , 卢涛 , 周华兵 , 李迅 , 于宝成 , 徐文霞 , 鲁统伟 , 闵峰 , 朱锐 , 彭丽 , 王逸文
IPC: G06F16/21 , G06F16/2458 , G06F16/28
Abstract: 本发明公开了一种构件行为模型挖掘方法与装置,该方法包括:S1)运行包含构件的软件,动态采集构件的带参行为交互序列,构成序列集合;S2)合并具有不同参数值的相同构件行为交互序列;S3)基于合并后的构件行为交互序列构建一棵树;S4)合并树中的等价节点获得有限状态机R’;S5)根据参数观察值集合归纳参数的不变式作为有限状态机R’中对应边的守护条件;S6)计算有限状态机R’中构件行为满足参数不变式的概率;S7)基于步骤S6)中迁移发生的概率得到最终的带参概率自动机表示的构件行为模型。本发明考虑了构件行为模型中参数‑构件行为之间的依赖关系并采用概率模型对模型挖掘过程中的噪声进行有效处理,可获得更精确的构件行为模型。
-
公开(公告)号:CN112734642B
公开(公告)日:2023-03-10
申请号:CN202110035136.6
申请日:2021-01-12
Applicant: 武汉工程大学
Abstract: 本发明公开了一种多尺度纹理转移残差网络的遥感卫星超分辨率方法及装置,属于遥感卫星图像超分辨率领域,该方法包括:将下采样后的目标低分辨率图像通过深度残差网络进行特征提取,对提取出的特征图进行两次上采样操作,使其与原高分辨率卫星图像大小一致;由多尺度残差模块内使用不同卷积的残差块提取特征图特征信息,使用交叉的方式实现特征信息共享,残差模块外使用跳跃连接的方式实现多尺度特征信息融合;通过特征融合来更新目标低分辨率卫星图像的特征图以生成最终的高分辨率卫星图像;利用判别器对生成的高分辨率图像与原始的高分辨率图像进行对比。本发明所提出的网络优于其他最新的遥感卫星图像超分辨率算法,能生成更高质量的卫星图像。
-
公开(公告)号:CN111531581B
公开(公告)日:2023-02-03
申请号:CN202010342989.X
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于视觉的工业机器人故障动作检测方法及系统,其中,一种基于视觉的工业机器人故障动作检测方法,包括以下步骤,S1:采集工业机器人标准作业视频,建立工业机器人标准作业模式视频帧序列;S2:实时采集工业机器人作业图像,获取工业机器人实时动作图像;S3:将工业机器人实时动作图像与工业机器人标准作业模式视频帧序列进行匹配,判断工业机器人标准作业模式视频帧序列中是否存在与工业机器人实时动作图像近似匹配的图像,若是,执行S2,若否,执行S4;S4:控制工业机器人急停。本发明具有采用非接触式的方式发现工业机器人本体突发故障,避免在人机协作时发生机器人伤人的安全事故、检测过程简单准确的优点。
-
公开(公告)号:CN109886869B
公开(公告)日:2022-12-20
申请号:CN201811199243.7
申请日:2018-10-15
Applicant: 武汉工程大学
IPC: G06T3/40 , G06V10/774 , G06V10/772
Abstract: 本发明公开了一种基于上下文信息的非线性拓展的人脸超分辨率方法,该方法首先通过上下文块对上下文信息进行抽样,以丰富人脸图像表示的先验信息,并在正则化目标函数时利用设置阈值对上下文字典进行降维,然后利用高斯核函数将原始数据转化为核空间,通过协作表示建立高低分辨率图像之间的非线性关系,最后采用上下文残差学习重建出待测图像。本方法通过高斯核函数建立高低分辨率图像之间的非线性映射,并将高维特征空间中的非线性问题表示为线性问题。此外,它还使用上下文残差学习来获得更准确的图像表示的先验信息,提高了重建的性能。
-
-
-
-
-
-
-
-
-