-
公开(公告)号:CN118629672B
公开(公告)日:2024-10-11
申请号:CN202411110690.6
申请日:2024-08-14
IPC: G16H70/40 , G16H20/10 , G16H50/70 , G06F18/25 , G16C20/50 , G16C20/70 , G16B35/00 , G16B40/00 , G06N3/045 , G06N3/042 , G06N3/0464 , G06N3/0455
Abstract: 本发明公开了一种基于多模态数据融合的药物协同组合预测方法,首先获取药物组合样本的药物特征向量和细胞系基因表达量;接着基于多头自注意力的图注意力网络和最大池化操作提取药物特征向量中的药物分子图特征;再基于可变形卷积网络提取药物特征向量中的药物摩根指纹特征,并通过空间重建模块抑制药物摩根指纹特征的冗余;然后基于多层感知机提取细胞系基因表达量中的细胞系特征;最后采用Transformer将药物分子图特征、重建后的药物摩根指纹特征和细胞系特征进行特征融合,得到药物协同组合预测结果。本发明通过融合药物的多模态数据,增强了模型对药物的表征能力,进而提高了对未知药物协同组合的预测精度和泛化能力。
-
公开(公告)号:CN117093918A
公开(公告)日:2023-11-21
申请号:CN202311347683.3
申请日:2023-10-18
Applicant: 成都信息工程大学
IPC: G06F18/241 , G06F18/214 , G06F18/15 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种基于格拉姆角和场和CBAM‑Resnet34的重叠尖锋识别方法,首先使用已有的尖锋数据来制作重叠尖锋模板训练集,接着采用格拉姆角和场方法将一维尖锋序列转换成二维图像,用于训练CBAM‑Resnet34模型。经过训练后,该模型可以准确地对重叠尖锋进行分类,不仅节省了大量时间和人力成本,而且其平均准确率达到了92.737%,超过了传统方法。结果表明该方法可以有效地区分重叠尖锋。综上所述,GASF‑CBAM‑Resnet34模型的重叠尖锋分类方法是一种有效的解决重叠尖锋问题和提高分类准确性的方法。
-
公开(公告)号:CN116807479B
公开(公告)日:2023-11-10
申请号:CN202311086072.8
申请日:2023-08-28
Applicant: 成都信息工程大学
Abstract: 本发明公开了一种基于多模态深度神经网络的驾驶注意力检测方法,属于驾驶注意力检测技术领域,为了解决现有驾驶注意力检测过程中用单一模态的指标去进行检测的可靠性不足的技术问题,包括:S1:获取原始公开数据集中的脑电数据和眼电数据;S2:分别对所述脑电数据和所述眼电数据进行预处理,得到预处理后的眼电数据和预处理后的脑电数据;S3:根据所述预处理后的眼电数据和所述预处理后的脑电数据,对多模态深度神经网络进行训练,得到训练好的多模态深度神经网络;S4:利用所述训练好的多模态深度神经网络对驾驶输入图像进行注意力检测,得到驾驶注意力检测结果。本发明能够有效地提升检测结果的准确性。
-
公开(公告)号:CN116884500A
公开(公告)日:2023-10-13
申请号:CN202310861912.7
申请日:2023-07-13
Abstract: 本发明公开了一种交互式单细胞ATAC‑seq数据分析系统及方法,本发明以scATAC‑seq特征峰的DNA序列作为数据集,利用基于scATAC‑seq特征峰的DNA序列作为数据集以此完成各个序列特征峰在各细胞中的染色质可及性、单细胞聚类、单细胞ATAC‑seq数据降噪、转录因子活性推断的任务。进一步地,本发明基于LoRA微调、Prefix微调与Adapter微调将预训练大模型适配到各个分析任务中,并以此搭建在线的交互式分析平台,有效降低了微调大型预训练模型的成本,使得生物信息学家可以轻松地进行单细胞ATAC‑seq数据分析,而无需掌握编程知识。
-
公开(公告)号:CN116805513A
公开(公告)日:2023-09-26
申请号:CN202311066361.1
申请日:2023-08-23
IPC: G16B40/00 , G16B5/00 , G06N3/0455
Abstract: 本发明公开了一种基于异构图Transformer框架的癌症驱动基因预测与分析方法,涉及生物信息学领域,该方法包括:利用基因与基因的相互作用关系、蛋白质与蛋白质的相互作用关系和基因与蛋白质的对应关系,构建基因与蛋白质的异构网络;构建异构图Transformer模块,并根据异构图Transformer模块和基因与蛋白质的异构网络生成目标节点的嵌入;构建全连接层分类模块,根据全连接层分类模块和目标节点的嵌入生成癌症驱动基因预测结果,并对癌症驱动基因预测结果进行分析。本发明能充分利用不同的生物网络中的实体之间的关联关系,解决了生物网络先验信息未充分利用的问题,进而提升了癌症驱动基因预测的准确性。
-
公开(公告)号:CN111861924B
公开(公告)日:2023-09-22
申请号:CN202010715325.3
申请日:2020-07-23
Applicant: 成都信息工程大学
IPC: G06T5/00
Abstract: 本发明涉及一种基于进化GAN的心脏磁共振图像数据增强方法,该方法在训练生成器时,对生成器进行突变生成多个子代生成器,通过适应性分数函数来评判多个生成器的适应性分数,根据分数来选择最优的子代生成器作为下一个迭代的父代生成器,同时在判别器训练阶段,结合特征向量的线性插值合成新的训练样本并生成相关的线性插值标签,不仅拓展了整个训练集的分布,也对离散样本空间进行连续化并且提高了领域间的平滑性,从而使得模型能够更好地得到训练。本发明的方法图像增强方法,能够生成高质量且多样的样本对训练集进行扩充,最终提高了分类结果的各项指标。
-
公开(公告)号:CN116756657A
公开(公告)日:2023-09-15
申请号:CN202311031625.X
申请日:2023-08-16
Applicant: 成都信息工程大学
IPC: G06F18/2415 , G06F18/25 , G06F18/10 , G06N3/0464 , G06N3/0455 , G06N3/047 , G06N3/0499 , G06N3/048 , G06N3/084 , G06F123/02
Abstract: 本发明公开了一种基于CNN和Transformer的fNIRS脑力负荷检测方法,其包括获取fNIRS采集设备采集的原始数据,并对原始数据进行预处理得到氧合血红蛋白和脱氧血红蛋白浓度的信号#imgabs0#和#imgabs1#;对信号#imgabs2#和#imgabs3#进行一维卷积操作,并在通道维度上对卷积操作后的两个信号进行组合,得到组合信号Hb;采用卷积神经网络对组合信号Hb进行局部细粒度时间特征的提取,得到特征矩阵;采用Transformer模块对特征矩阵进行特征增强提取,得到状态特征;将状态特征输入多层感知机分类层,得到脑力负荷检测的分类结果。
-
公开(公告)号:CN116363635A
公开(公告)日:2023-06-30
申请号:CN202310265323.2
申请日:2023-03-17
Applicant: 成都信息工程大学
IPC: G06V20/59 , G06V40/16 , G06V40/18 , G06V10/80 , G06V10/82 , G06V10/774 , G06N3/0464 , G06N3/0442 , G06N3/048 , G06N3/045 , G06N3/08
Abstract: 本发明公开了一种驾驶员疲劳检测方法,所述驾驶员疲劳检测方法包括:S1:利用Wider_face人脸数据集训练MTCNN模型结构,得到训练好的MTCNN模型结构;S2:利用所述训练好的MTCNN模型结构对人脸图像中的人脸关键特征进行定位,得到定位后的人脸图像;S3:对所述定位后的人脸图像进行眼部特征提取,得到眼部时间特征和眼部空间特征;S4:利用多维度的深度融合网络对所述眼部时间特征和所述眼部空间特征进行融合,得到融合结果;S5:对所述融合结果进行状态识别,得到驾驶员疲劳检测结果。本发明能够将眼睛特征转化为时间特征和空间特征,以从不同的角度深入挖掘局部特征,从而最大化疲劳检测的效果。
-
公开(公告)号:CN116153404A
公开(公告)日:2023-05-23
申请号:CN202310182496.8
申请日:2023-02-28
Applicant: 成都信息工程大学
IPC: G16B25/00 , G16B40/00 , G06N3/0455
Abstract: 本发明公开了一种单细胞ATAC‑seq数据分析方法,通过提取单细胞分辨率的染色质可达性特征峰序列中转录因子‑DNA结合基元的所属种类、相对位置、长距离依赖关系等众多转录调控语法规则,从而更全面地表示单个细胞的功能状态和高阶特征。此外,本发明方法利用获取的转录调控语法规则、细胞功能状态和高阶特征,一站式地实现染色质可达性预测、细胞类型注释、染色质可达性图谱降噪、转录因子活性推断等一系列下游分析任务。
-
公开(公告)号:CN115938592B
公开(公告)日:2023-05-05
申请号:CN202310220890.6
申请日:2023-03-09
Applicant: 成都信息工程大学
IPC: G16H50/30 , G06F18/25 , G16B20/10 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于局部增强图卷积网络的癌症预后预测方法,属于医学技术领域,包括以下步骤:S1:获取多组学数据和通路原始数据,并利用多组学数据路和通路原始数据构建无向图;S2:对无向图进行局部增强;S3:利用图卷积网络对局部增强后的无向图进行特征提取和特征融合,得到整体特征映射组合;S4:根据整体特征映射组合,构建比例风险模型,将整体特征映射组合输入至比例风险模型中,确定患者生存风险。本发明通过对癌症相关组学数据构建图神经网络学习,对患者进行预后预测及分析,可以为生物实验提供一定指导,从而有效减少实验时间与节省实验成本。
-
-
-
-
-
-
-
-
-