-
公开(公告)号:CN116805513A
公开(公告)日:2023-09-26
申请号:CN202311066361.1
申请日:2023-08-23
IPC: G16B40/00 , G16B5/00 , G06N3/0455
Abstract: 本发明公开了一种基于异构图Transformer框架的癌症驱动基因预测与分析方法,涉及生物信息学领域,该方法包括:利用基因与基因的相互作用关系、蛋白质与蛋白质的相互作用关系和基因与蛋白质的对应关系,构建基因与蛋白质的异构网络;构建异构图Transformer模块,并根据异构图Transformer模块和基因与蛋白质的异构网络生成目标节点的嵌入;构建全连接层分类模块,根据全连接层分类模块和目标节点的嵌入生成癌症驱动基因预测结果,并对癌症驱动基因预测结果进行分析。本发明能充分利用不同的生物网络中的实体之间的关联关系,解决了生物网络先验信息未充分利用的问题,进而提升了癌症驱动基因预测的准确性。
-
公开(公告)号:CN116153404A
公开(公告)日:2023-05-23
申请号:CN202310182496.8
申请日:2023-02-28
Applicant: 成都信息工程大学
IPC: G16B25/00 , G16B40/00 , G06N3/0455
Abstract: 本发明公开了一种单细胞ATAC‑seq数据分析方法,通过提取单细胞分辨率的染色质可达性特征峰序列中转录因子‑DNA结合基元的所属种类、相对位置、长距离依赖关系等众多转录调控语法规则,从而更全面地表示单个细胞的功能状态和高阶特征。此外,本发明方法利用获取的转录调控语法规则、细胞功能状态和高阶特征,一站式地实现染色质可达性预测、细胞类型注释、染色质可达性图谱降噪、转录因子活性推断等一系列下游分析任务。
-
公开(公告)号:CN118609855A
公开(公告)日:2024-09-06
申请号:CN202411078638.7
申请日:2024-08-07
Abstract: 本发明公开了一种基于异构图神经网络和多组学的癌症药物反应预测方法,涉及癌症药物反应预测领域,其通过构建细胞‑药物异构图神经网络,并将异构图神经网络应用到癌症药物反应预测问题模型构建,能够有效地学习细胞系与癌症药物之间存在的复杂联系;并且融合多组学数据,从多组学角度全面地学习细胞系特征,使模型更符合生物学意义,具备更好的鲁棒性,提高了癌症药物反应预测的准确率。
-
公开(公告)号:CN116805513B
公开(公告)日:2023-10-31
申请号:CN202311066361.1
申请日:2023-08-23
IPC: G16B40/00 , G16B5/00 , G06N3/0455
Abstract: 本发明公开了一种基于异构图Transformer框架的癌症驱动基因预测与分析方法,涉及生物信息学领域,该方法包括:利用基因与基因的相互作用关系、蛋白质与蛋白质的相互作用关系和基因与蛋白质的对应关系,构建基因与蛋白质的异构网络;构建异构图Transformer模块,并根据异构图Transformer模块和基因与蛋白质的异构网络生成目标节点的嵌入;构建全连接层分类模块,根据全连接层分类模块和目标节点的嵌入生成癌症驱动基因预测结果,并对癌症驱动基因预测结果进行分析。本发明能充分利用不同的生物网络中的实体之间的关联关系,解决了生物网络先验信息未充分利用的问题,进而提升了癌症驱动基因预测的准确性。
-
公开(公告)号:CN116153404B
公开(公告)日:2023-08-15
申请号:CN202310182496.8
申请日:2023-02-28
Applicant: 成都信息工程大学
IPC: G16B25/00 , G16B40/00 , G06N3/0455
Abstract: 本发明公开了一种单细胞ATAC‑seq数据分析方法,通过提取单细胞分辨率的染色质可达性特征峰序列中转录因子‑DNA结合基元的所属种类、相对位置、长距离依赖关系等众多转录调控语法规则,从而更全面地表示单个细胞的功能状态和高阶特征。此外,本发明方法利用获取的转录调控语法规则、细胞功能状态和高阶特征,一站式地实现染色质可达性预测、细胞类型注释、染色质可达性图谱降噪、转录因子活性推断等一系列下游分析任务。
-
公开(公告)号:CN119446314B
公开(公告)日:2025-04-11
申请号:CN202510039533.9
申请日:2025-01-10
IPC: G16C20/10 , G16C20/50 , G16H70/40 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/25 , G06N3/042 , G06N3/08
Abstract: 本发明公开了一种基于多通道特征融合的药物‑药物相互作用预测方法,利用药物数据的多样特征,结合多通道特征融合模块和交叉注意力机制,将药物分子子结构、药物相似性矩阵和分子指纹有效结合,然后使用KAN神经网络实现高效准确的DDI预测。本方法高效的整合药物多种特征信息数据,如药物子结构、药物相似性、药物分子指纹数据,实现了高效准确的多通道特征融合的药物‑药物反应预测;本发明提出的MCF‑DDI模型在可解释实验和对比实验中展现出了卓越的性能,不仅评价指标和稳定性都有不同程度提升,还能识别出药物分子中关键子结构并验证这些子结构在药物相互作用预测中的重要性,为药物研发和临床应用提供了有力的理论支持。
-
公开(公告)号:CN119446314A
公开(公告)日:2025-02-14
申请号:CN202510039533.9
申请日:2025-01-10
IPC: G16C20/10 , G16C20/50 , G16H70/40 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/25 , G06N3/042 , G06N3/08
Abstract: 本发明公开了一种基于多通道特征融合的药物‑药物相互作用预测方法,利用药物数据的多样特征,结合多通道特征融合模块和交叉注意力机制,将药物分子子结构、药物相似性矩阵和分子指纹有效结合,然后使用KAN神经网络实现高效准确的DDI预测。本方法高效的整合药物多种特征信息数据,如药物子结构、药物相似性、药物分子指纹数据,实现了高效准确的多通道特征融合的药物‑药物反应预测;本发明提出的MCF‑DDI模型在可解释实验和对比实验中展现出了卓越的性能,不仅评价指标和稳定性都有不同程度提升,还能识别出药物分子中关键子结构并验证这些子结构在药物相互作用预测中的重要性,为药物研发和临床应用提供了有力的理论支持。
-
-
-
-
-
-