-
公开(公告)号:CN119132426B
公开(公告)日:2025-04-04
申请号:CN202411242471.3
申请日:2024-09-05
IPC: G16B50/10 , G16B20/00 , G16B40/00 , G06F18/213 , G06F18/25 , G06F18/2415 , G06N3/0455 , G06N3/09
Abstract: 本发明公开了一种基于预训练的单细胞多组学的细胞类型注释方法,其属于生物信息技术领域,包括获取配对的scRNA‑seq数据的基因表达矩阵和scATAC‑seq数据的染色质可及性峰值矩阵,并对基因表达矩阵和染色质可及性峰值矩阵进行预处理,之后输入预训练的特征提取器,采用其多头交叉注意力网络得到融合多组学的查询特征矩阵;特征提取器包括多头交叉注意力网络和两个分类器;将查询特征矩阵输入分类模型,采用线性层进行数据拆分,接着输入Transformer编码器进行多组学遗传特征提取,之后输入分类器进行细胞类型注释。本方案的细胞类型注释方法解决了现有方法细胞类型注释存在偏差的问题。
-
公开(公告)号:CN119132426A
公开(公告)日:2024-12-13
申请号:CN202411242471.3
申请日:2024-09-05
IPC: G16B50/10 , G16B20/00 , G16B40/00 , G06F18/213 , G06F18/25 , G06F18/2415 , G06N3/0455 , G06N3/09
Abstract: 本发明公开了一种基于预训练的单细胞多组学的细胞类型注释方法,其属于生物信息技术领域,包括获取配对的scRNA‑seq数据的基因表达矩阵和scATAC‑seq数据的染色质可及性峰值矩阵,并对基因表达矩阵和染色质可及性峰值矩阵进行预处理,之后输入预训练的特征提取器,采用其多头交叉注意力网络得到融合多组学的查询特征矩阵;特征提取器包括多头交叉注意力网络和两个分类器;将查询特征矩阵输入分类模型,采用线性层进行数据拆分,接着输入Transformer编码器进行多组学遗传特征提取,之后输入分类器进行细胞类型注释。本方案的细胞类型注释方法解决了现有方法细胞类型注释存在偏差的问题。
-
公开(公告)号:CN115938592A
公开(公告)日:2023-04-07
申请号:CN202310220890.6
申请日:2023-03-09
Applicant: 成都信息工程大学
IPC: G16H50/30 , G06F18/25 , G16B20/10 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于局部增强图卷积网络的癌症预后预测方法,属于医学技术领域,包括以下步骤:S1:获取多组学数据和通路原始数据,并利用多组学数据路和通路原始数据构建无向图;S2:对无向图进行局部增强;S3:利用图卷积网络对局部增强后的无向图进行特征提取和特征融合,得到整体特征映射组合;S4:根据整体特征映射组合,构建比例风险模型,将整体特征映射组合输入至比例风险模型中,确定患者生存风险。本发明通过对癌症相关组学数据构建图神经网络学习,对患者进行预后预测及分析,可以为生物实验提供一定指导,从而有效减少实验时间与节省实验成本。
-
公开(公告)号:CN115938592B
公开(公告)日:2023-05-05
申请号:CN202310220890.6
申请日:2023-03-09
Applicant: 成都信息工程大学
IPC: G16H50/30 , G06F18/25 , G16B20/10 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于局部增强图卷积网络的癌症预后预测方法,属于医学技术领域,包括以下步骤:S1:获取多组学数据和通路原始数据,并利用多组学数据路和通路原始数据构建无向图;S2:对无向图进行局部增强;S3:利用图卷积网络对局部增强后的无向图进行特征提取和特征融合,得到整体特征映射组合;S4:根据整体特征映射组合,构建比例风险模型,将整体特征映射组合输入至比例风险模型中,确定患者生存风险。本发明通过对癌症相关组学数据构建图神经网络学习,对患者进行预后预测及分析,可以为生物实验提供一定指导,从而有效减少实验时间与节省实验成本。
-
-
-