-
公开(公告)号:CN119446314B
公开(公告)日:2025-04-11
申请号:CN202510039533.9
申请日:2025-01-10
IPC: G16C20/10 , G16C20/50 , G16H70/40 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/25 , G06N3/042 , G06N3/08
Abstract: 本发明公开了一种基于多通道特征融合的药物‑药物相互作用预测方法,利用药物数据的多样特征,结合多通道特征融合模块和交叉注意力机制,将药物分子子结构、药物相似性矩阵和分子指纹有效结合,然后使用KAN神经网络实现高效准确的DDI预测。本方法高效的整合药物多种特征信息数据,如药物子结构、药物相似性、药物分子指纹数据,实现了高效准确的多通道特征融合的药物‑药物反应预测;本发明提出的MCF‑DDI模型在可解释实验和对比实验中展现出了卓越的性能,不仅评价指标和稳定性都有不同程度提升,还能识别出药物分子中关键子结构并验证这些子结构在药物相互作用预测中的重要性,为药物研发和临床应用提供了有力的理论支持。
-
公开(公告)号:CN119446314A
公开(公告)日:2025-02-14
申请号:CN202510039533.9
申请日:2025-01-10
IPC: G16C20/10 , G16C20/50 , G16H70/40 , G06F18/213 , G06F18/214 , G06F18/22 , G06F18/25 , G06N3/042 , G06N3/08
Abstract: 本发明公开了一种基于多通道特征融合的药物‑药物相互作用预测方法,利用药物数据的多样特征,结合多通道特征融合模块和交叉注意力机制,将药物分子子结构、药物相似性矩阵和分子指纹有效结合,然后使用KAN神经网络实现高效准确的DDI预测。本方法高效的整合药物多种特征信息数据,如药物子结构、药物相似性、药物分子指纹数据,实现了高效准确的多通道特征融合的药物‑药物反应预测;本发明提出的MCF‑DDI模型在可解释实验和对比实验中展现出了卓越的性能,不仅评价指标和稳定性都有不同程度提升,还能识别出药物分子中关键子结构并验证这些子结构在药物相互作用预测中的重要性,为药物研发和临床应用提供了有力的理论支持。
-
公开(公告)号:CN118629672A
公开(公告)日:2024-09-10
申请号:CN202411110690.6
申请日:2024-08-14
IPC: G16H70/40 , G16H20/10 , G16H50/70 , G06F18/25 , G16C20/50 , G16C20/70 , G16B35/00 , G16B40/00 , G06N3/045 , G06N3/042 , G06N3/0464 , G06N3/0455
Abstract: 本发明公开了一种基于多模态数据融合的药物协同组合预测方法,首先获取药物组合样本的药物特征向量和细胞系基因表达量;接着基于多头自注意力的图注意力网络和最大池化操作提取药物特征向量中的药物分子图特征;再基于可变形卷积网络提取药物特征向量中的药物摩根指纹特征,并通过空间重建模块抑制药物摩根指纹特征的冗余;然后基于多层感知机提取细胞系基因表达量中的细胞系特征;最后采用Transformer将药物分子图特征、重建后的药物摩根指纹特征和细胞系特征进行特征融合,得到药物协同组合预测结果。本发明通过融合药物的多模态数据,增强了模型对药物的表征能力,进而提高了对未知药物协同组合的预测精度和泛化能力。
-
公开(公告)号:CN118609855A
公开(公告)日:2024-09-06
申请号:CN202411078638.7
申请日:2024-08-07
Abstract: 本发明公开了一种基于异构图神经网络和多组学的癌症药物反应预测方法,涉及癌症药物反应预测领域,其通过构建细胞‑药物异构图神经网络,并将异构图神经网络应用到癌症药物反应预测问题模型构建,能够有效地学习细胞系与癌症药物之间存在的复杂联系;并且融合多组学数据,从多组学角度全面地学习细胞系特征,使模型更符合生物学意义,具备更好的鲁棒性,提高了癌症药物反应预测的准确率。
-
公开(公告)号:CN116312765A
公开(公告)日:2023-06-23
申请号:CN202310122535.5
申请日:2023-02-15
Applicant: 成都信息工程大学
IPC: G16B20/20 , G16B40/20 , G16B30/00 , G06N3/0464
Abstract: 本发明提供了一种基于多阶段的非编码变异对增强子活性影响预测方法,涉及生物信息技术领域,该方法包括获取增强子相关特征,并对其进行预处理;构建并训练基于元学习的染色质特征预测模型;基于特征融合模型得到融合多染色质特征的联合表征;构建和训练基于多染色质特征联合表征的增强子活性预测模型;利用染色质特征预测模型以及增强子活性预测模型预测变异对增强子活性的影响;根据变异对增强子活性的影响,对功能性变异进行筛选。本发明提出了一个有效的增强子活性预测框架,实现变异对增强子活性影响的精确预测,解决了传统方法基于DNA序列进行预测,效果不佳的缺点。
-
公开(公告)号:CN116805513B
公开(公告)日:2023-10-31
申请号:CN202311066361.1
申请日:2023-08-23
IPC: G16B40/00 , G16B5/00 , G06N3/0455
Abstract: 本发明公开了一种基于异构图Transformer框架的癌症驱动基因预测与分析方法,涉及生物信息学领域,该方法包括:利用基因与基因的相互作用关系、蛋白质与蛋白质的相互作用关系和基因与蛋白质的对应关系,构建基因与蛋白质的异构网络;构建异构图Transformer模块,并根据异构图Transformer模块和基因与蛋白质的异构网络生成目标节点的嵌入;构建全连接层分类模块,根据全连接层分类模块和目标节点的嵌入生成癌症驱动基因预测结果,并对癌症驱动基因预测结果进行分析。本发明能充分利用不同的生物网络中的实体之间的关联关系,解决了生物网络先验信息未充分利用的问题,进而提升了癌症驱动基因预测的准确性。
-
公开(公告)号:CN116153404B
公开(公告)日:2023-08-15
申请号:CN202310182496.8
申请日:2023-02-28
Applicant: 成都信息工程大学
IPC: G16B25/00 , G16B40/00 , G06N3/0455
Abstract: 本发明公开了一种单细胞ATAC‑seq数据分析方法,通过提取单细胞分辨率的染色质可达性特征峰序列中转录因子‑DNA结合基元的所属种类、相对位置、长距离依赖关系等众多转录调控语法规则,从而更全面地表示单个细胞的功能状态和高阶特征。此外,本发明方法利用获取的转录调控语法规则、细胞功能状态和高阶特征,一站式地实现染色质可达性预测、细胞类型注释、染色质可达性图谱降噪、转录因子活性推断等一系列下游分析任务。
-
公开(公告)号:CN115938592A
公开(公告)日:2023-04-07
申请号:CN202310220890.6
申请日:2023-03-09
Applicant: 成都信息工程大学
IPC: G16H50/30 , G06F18/25 , G16B20/10 , G06N3/0464 , G06N3/0455 , G06N3/08
Abstract: 本发明公开了一种基于局部增强图卷积网络的癌症预后预测方法,属于医学技术领域,包括以下步骤:S1:获取多组学数据和通路原始数据,并利用多组学数据路和通路原始数据构建无向图;S2:对无向图进行局部增强;S3:利用图卷积网络对局部增强后的无向图进行特征提取和特征融合,得到整体特征映射组合;S4:根据整体特征映射组合,构建比例风险模型,将整体特征映射组合输入至比例风险模型中,确定患者生存风险。本发明通过对癌症相关组学数据构建图神经网络学习,对患者进行预后预测及分析,可以为生物实验提供一定指导,从而有效减少实验时间与节省实验成本。
-
公开(公告)号:CN118629672B
公开(公告)日:2024-10-11
申请号:CN202411110690.6
申请日:2024-08-14
IPC: G16H70/40 , G16H20/10 , G16H50/70 , G06F18/25 , G16C20/50 , G16C20/70 , G16B35/00 , G16B40/00 , G06N3/045 , G06N3/042 , G06N3/0464 , G06N3/0455
Abstract: 本发明公开了一种基于多模态数据融合的药物协同组合预测方法,首先获取药物组合样本的药物特征向量和细胞系基因表达量;接着基于多头自注意力的图注意力网络和最大池化操作提取药物特征向量中的药物分子图特征;再基于可变形卷积网络提取药物特征向量中的药物摩根指纹特征,并通过空间重建模块抑制药物摩根指纹特征的冗余;然后基于多层感知机提取细胞系基因表达量中的细胞系特征;最后采用Transformer将药物分子图特征、重建后的药物摩根指纹特征和细胞系特征进行特征融合,得到药物协同组合预测结果。本发明通过融合药物的多模态数据,增强了模型对药物的表征能力,进而提高了对未知药物协同组合的预测精度和泛化能力。
-
公开(公告)号:CN116805513A
公开(公告)日:2023-09-26
申请号:CN202311066361.1
申请日:2023-08-23
IPC: G16B40/00 , G16B5/00 , G06N3/0455
Abstract: 本发明公开了一种基于异构图Transformer框架的癌症驱动基因预测与分析方法,涉及生物信息学领域,该方法包括:利用基因与基因的相互作用关系、蛋白质与蛋白质的相互作用关系和基因与蛋白质的对应关系,构建基因与蛋白质的异构网络;构建异构图Transformer模块,并根据异构图Transformer模块和基因与蛋白质的异构网络生成目标节点的嵌入;构建全连接层分类模块,根据全连接层分类模块和目标节点的嵌入生成癌症驱动基因预测结果,并对癌症驱动基因预测结果进行分析。本发明能充分利用不同的生物网络中的实体之间的关联关系,解决了生物网络先验信息未充分利用的问题,进而提升了癌症驱动基因预测的准确性。
-
-
-
-
-
-
-
-
-