用于微弱光探测的量子点共振隧穿二极管及探测方法

    公开(公告)号:CN101237003A

    公开(公告)日:2008-08-06

    申请号:CN200710047623.4

    申请日:2007-10-31

    Abstract: 本发明公开了一种用于微弱光探测的量子点共振隧穿二极管及探测方法,该量子点共振隧穿二极管,包括:响应可见光的GaAs或响应红外的InGaAs光子吸收区,自组装量子点、薄的AlAs双势垒层、GaAs势阱层。自组装量子点和薄的AlAs双势垒层、GaAs势阱层的组合可以让量子点直接参与共振隧穿过程,大大增强了共振隧穿过程对光生载流子的放大能力。该探测方法:利用在入射光探测前先对量子点进行载流子填充形成亚稳态,进一步增强器件的光响应能力。本发明的优点是:器件结构简单,量子点大小和密度均属常规生长范围,制备容易;器件在液氮温度下得到了超高灵敏度的光子探测能力。

    氮化镓基圆盘式单色光源列阵

    公开(公告)号:CN100401544C

    公开(公告)日:2008-07-09

    申请号:CN200610028490.1

    申请日:2006-06-30

    Abstract: 本发明的氮化镓基圆盘式单色光源列阵包括:衬底,在衬底上置底牢固结合的光子晶体微腔和波导结构。光子晶体微腔和波导结构是由在景介质材料上通过刻蚀的方法形成一系列周期性排列并含有特定缺陷的圆柱形空气柱构成的。背景介质材料由依次排列生长的n-GaN下电极层、InGaN/GaN量子阱结构或AlGaN/InGaN异质结结构的发光层和p-GaN上电极层组成。氮化镓作为光源发出宽度为几十纳米的某个波段的光,而含有不同线缺陷的光子晶体波导则可以近乎无损地把这个波段内的单色光分别耦合到圆盘四周,形成圆盘式的单色光源列阵。利用这种结构可以近乎无损地从微腔中耦合出单色性很好的单色光,甚至可以实现直角拐弯,形成一种结构紧凑的单色光源列阵。

    自放大红外探测器
    36.
    发明授权

    公开(公告)号:CN100392870C

    公开(公告)日:2008-06-04

    申请号:CN200510029982.8

    申请日:2005-09-23

    Abstract: 本发明公开了一种自放大红外探测器,它由InGaAs/AlGaAs多量子阱红外探测器以及AlAs/GaAs/AlAs共振隧穿二极管与InAs量子点组成的探测信号的自放大部分组成。本发明的优点是:巧妙地采用了量子点的量子限制效应和共振隧穿二极管电子的隧道效应,将二者有效结合作为红外量子阱探测器的自放大单元,并且与红外量子阱探测器可以集成在同一芯片上,是一种放大与探测已经完全集成的体系。

    利用铟镓氮发光二极管作为红外目标信号探测的成像装置

    公开(公告)号:CN100345317C

    公开(公告)日:2007-10-24

    申请号:CN200510111089.X

    申请日:2005-12-02

    Abstract: 本发明公开了一种利用铟镓氮量子阱发光二极管作为红外目标信号探测的成像装置。该成像装置包括:二片透镜、分束片、低温杜瓦和InGaN量子阱发光二极管。红外目标源前进的方向上依次置有第一透镜、对红外光全透和可见光全反的分束片和可作为红外目标源探测用的置于低温杜瓦中的发光二极管;发光二极管发出的可见光图像的前进方向上依次置有对红外光全透和可见光全反的分束片和第二透镜。它是利用二极管在低温下,发光中心富In的InGaN量子点在发光的同时可对红外波长吸收,从而引起量子点的发光减弱。即可以通过发光二极管发出的可见光发生变化的空间位置与红外光照到的点的一一对应来实现对目标的红外信号探测。本发明的优点是:红外响应的读出采用人眼对发光二极管的发光强度的直接判读而实现,大大简化了成像装置的结构。

    一种用于光学材料微弱吸收测量的设备及方法

    公开(公告)号:CN100334440C

    公开(公告)日:2007-08-29

    申请号:CN200410084794.0

    申请日:2004-12-01

    Abstract: 本发明公开了一种用于光学材料微弱吸收测量的设备及方法,该发明是基于F-P干涉原理进行设计的,即在两片完全相同的窄带通高反膜系之间夹一真空层或空气层作为谐振腔,构成一个品质因子非常高的超窄带通滤光片,利用带通位置处的透过率对谐振腔的吸收特别敏感的特性,只要将待测样品放在谐振腔内,谐振腔内会有微弱吸收,就会引起透过率发生明显的变化,通过透过率的变化及利用商用的膜系设计与计算软件Filmstar绘制的峰值透过率差值(ΔT)随消光系数(κ)变化的标准曲线,就可以推算出待测光学材料的消光系数,进而得出其吸收系数。

Patent Agency Ranking