-
公开(公告)号:CN104932865A
公开(公告)日:2015-09-23
申请号:CN201510405107.9
申请日:2015-07-10
Applicant: 武汉工程大学
Abstract: 本发明公开了一种组件协议挖掘方法、装置及系统,该方法包括:发送开始插桩指令至所述N个客户端,所述开始插桩指令中携带有需要挖掘的类的M个函数的函数标识,M为大于1的整数;接收所述N个客户端发送的所述M个函数的函数调用信息;所述函数调用信息是所述N个客户端基于所述开始插桩指令收集的信息;根据所述函数调用信息更新所述服务器中存储的所述类的组件协议。本发明提供的方法、装置及系统用以解决现有技术中的组件协议挖掘方法存在的人力耗费大和挖掘效率低的技术问题。实现了降低数据获取人力成本,提高组件协议挖掘效率的技术效果。
-
公开(公告)号:CN114912741A
公开(公告)日:2022-08-16
申请号:CN202210294454.9
申请日:2022-03-23
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明提供一种作战体系结构效能评估方法、装置以及存储介质,属于仿真技术领域,方法包括:导入作战任务效能评估指标数据集,并对作战任务效能评估指标数据集进行数据集划分的分析,得到多个目标能力指标数据,并将所有的目标能力指标数据和作战任务效能评估指标数据集作为待处理数据集;对待处理数据集进行预测分析,得到作战体系结构效能评估结果。本发明能够使得训练速度和预测精度大大的提高,评估过程中无需人的参与,实现了效能自动化的评估,克服了评估过程中人为因素多,主观性强,耗时长以及成本高的缺点。
-
公开(公告)号:CN114494098A
公开(公告)日:2022-05-13
申请号:CN202210338505.3
申请日:2022-04-01
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明提供一种锂电池X射线图像增强方法、装置以及存储介质,属于图像处理技术领域,方法包括:通过X光机对待测锂电池进行图像采集得到锂电池X射线图像;对锂电池X射线图像的图像反射分量分析得到X射线反射图像;根据梯度因子对X射线反射图像的加权融合计算得到X射线融合图像;对X射线融合图像的对比度调整得到X射线调整图像。本发明有利于减弱光照伪影现象,避免了X射线图像这类低照度图像的亮度过度增强以及增强不足的问题,能够较好的提高锂电池X射线图像的对比度和清晰度,具有良好的图像增强效果,增强后的锂电池图像,电极得到增强,而噪声得到抑制,可显著提高锂电池电极缺陷检测的精度。
-
公开(公告)号:CN112949438A
公开(公告)日:2021-06-11
申请号:CN202110195714.2
申请日:2021-02-19
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明是涉及农业与人工智能领域,尤其是一种基于贝叶斯网络的水果视觉分类方法及系统。本发明通过获取待分类水果的待分类水果数据,并进行预处理得到多个待分类水果视觉特征值;分别对每个所述待分类水果视觉特征值进行离散化处理后,输入至预先训练好的水果分类贝叶斯网络模型进行处理,得到所述待分类水果在多个等级分类下的等级分类概率;根据多个所述等级分类概率对所述待分类水果进行等级分类。本发明实现了水果的精确分类,有效地降低在水果分拣中所花费的人力物力。通过构建复杂的水果分类的贝叶斯网络模型可实现水果的精确分类,实现降低人力物力,达到水果的快速分类。
-
公开(公告)号:CN111552269B
公开(公告)日:2021-05-28
申请号:CN202010343394.6
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于姿态估计的多工业机器人安全性检测方法及系统,其中方法包括:S1:采集多工业机器人标准作业视频,并建立多个单工业机器人动作模式姿态向量序列A14,单工业机器人动作模式姿态向量序列A14中包含多个单工业机器人姿态向量A13,执行S2;S2:实时采集多工业机器人的作业视频,获取多个单工业机器人姿态向量A23,执行S3;S3:将任一单工业机器人姿态向量A23,记为h1,与对应的单工业机器人动作模式姿态向量序列A14进行匹配,若匹配成功,则执行S2,若匹配失败,则检测到异常动作,控制工业机器人急停,本方法检测过程简单准确且成本较低,而且可以同时检测多个工业机器人的工作状态。
-
公开(公告)号:CN112732967A
公开(公告)日:2021-04-30
申请号:CN202110023565.1
申请日:2021-01-08
Applicant: 武汉工程大学 , 武汉引行科技有限公司
Abstract: 本发明涉及一种图像自动标注方法、系统及电子设备,接收待标记图像,将待标记图像输入到自动图像标注模型中,以使所述自动图像标注模型中的第二主干卷积神经网络、第二卷积注意力网络、第二多尺度特征融合分支网络依次对所述待标记图像进行处理,得到第K级第三图像特征图,并使所述自动图像标注模型中的第二标签预测网络对所述第K级第三图像特征图进行处理,得到所述待标记图像的语义标签,其中K为正整数。利用自动图像标注模型对待标记图像进行处理,可以方便快捷地对待标记图像进行标注,还可以在进行图像标注时能够提供不同比例的图像特征来对图像进行标注,从而使得对图像的注释更为全面。
-
公开(公告)号:CN111531580A
公开(公告)日:2020-08-14
申请号:CN202010342977.7
申请日:2020-04-27
Applicant: 武汉工程大学
Abstract: 本发明提供一种基于视觉的多工业机器人故障检测方法及系统,其中,一种基于视觉的多工业机器人故障检测方法,包括以下步骤,S1:采集多工业机器人标准作业视频,建立多个单工业机器人标准作业模式视频帧序列A13,执行S2;S2:实时采集多工业机器人作业视频,建立多个单工业机器人实时作业视频帧序列A22,执行S3;S3:将单工业机器人实时动作图像与对应的单工业机器人标准作业模式视频帧序列A13中的图像进行匹配,采用两阶段法检测单工业机器人是否动作异常,若是,执行S4,若否,执行S2;S4:控制该工业机器人急停。本发明具有采用非接触式的方式发现工业机器人本体突发故障,避免在人机协作时发生机器人伤人的安全事故、检测过程简单准确的优点。
-
公开(公告)号:CN110490236A
公开(公告)日:2019-11-22
申请号:CN201910690299.0
申请日:2019-07-29
Applicant: 武汉工程大学 , 武汉引行科技有限公司 , 武汉创逸灵科技有限公司
Abstract: 本发明涉及一种基于神经网络的自动图像标注方法、系统、装置和介质,利用预先训练好的卷积神经网络模型提取实验数据集的图像特征;根据图像特征,在训练集中计算得到待标注图像的邻域图像集和对应的第一标签域;构建第一标签域与训练集对应的第二标签域之间的标签语义关联模型,根据标签语义关联模型,在第二标签域中计算得到与每个第一标签相关联的第三标签域;计算待标注图像与每个邻域图像之间的相似度,根据所有相似度得到每个第一标签成为目标标签的第一概率,并根据所有第一概率和标签语义关联模型得到每个第三标签成为目标标签的第二概率;根据所有相似度、所有第一概率和所有第二概率,得到目标标签,并根据目标标签完成标注。
-
公开(公告)号:CN105608006B
公开(公告)日:2018-06-08
申请号:CN201510982321.0
申请日:2015-12-22
Applicant: 武汉工程大学
IPC: G06F11/36
Abstract: 本发明公开了一种基于概率模型的程序错误检测方法及系统,该方法包括以下步骤:S1、获取概率模型和待检测程序,从待检测程序中提取待检测的函数调用序列集合;S2、获取单个待检测的函数调用序列,求解最相似的函数调用序列集合,并计算联合概率;S3、根据相似集合对该待检测序列进行检测并生成修复方案;S4、完成该待检测序列的检测和修复后,记录检测到的各个错误信息及修复方案;S5、对待检测集合中的所有待检测序列检测完毕后,输出程序错误报告。本发明无需处理概率模型转换到确定性模型时的阈值选择问题,能够快速的检测程序中的错误,且检测准确率高。
-
公开(公告)号:CN104932865B
公开(公告)日:2017-10-10
申请号:CN201510405107.9
申请日:2015-07-10
Applicant: 武汉工程大学
Abstract: 本发明公开了一种组件协议挖掘方法、装置及系统,该方法包括:发送开始插桩指令至所述N个客户端,所述开始插桩指令中携带有需要挖掘的类的M个函数的函数标识,M为大于1的整数;接收所述N个客户端发送的所述M个函数的函数调用信息;所述函数调用信息是所述N个客户端基于所述开始插桩指令收集的信息;根据所述函数调用信息更新所述服务器中存储的所述类的组件协议。本发明提供的方法、装置及系统用以解决现有技术中的组件协议挖掘方法存在的人力耗费大和挖掘效率低的技术问题。实现了降低数据获取人力成本,提高组件协议挖掘效率的技术效果。
-
-
-
-
-
-
-
-
-