-
公开(公告)号:CN118465515A
公开(公告)日:2024-08-09
申请号:CN202410919386.X
申请日:2024-07-10
Applicant: 南京大学
Abstract: 本发明提供了一种半导体晶片内部电场的检测方法,包括以下步骤:在待测半导体晶片下方设置底电极;在待测半导体晶片表面上采用外延生长技术和电子束蒸发技术生成半透明电极;采用电子束蒸发技术在半透明电极的中心生长金电极,金电极的尺寸小于半透明电极;进行不同恒定偏压下的光电流测试,获得不同偏压下的光响应谱;光电流测试的光线垂直金电极进行照射;通过法兰兹‑卡尔迪西效应FK和相应半导体场吸收模型对待测半导体晶片在光电流测试中的耗尽区、扩散区和无场吸收区进行分析得到光响应公式,并与光响应谱进行拟合,得到不同偏压下待测半导体晶片的内部电场。对器件无损伤且简单易行,对实际器件内部电场进行精确检测。
-
公开(公告)号:CN114927578A
公开(公告)日:2022-08-19
申请号:CN202210525889.X
申请日:2022-05-16
Applicant: 南京大学
IPC: H01L29/88 , H01L29/267 , H01L29/24 , H01L29/207 , H01L29/20 , H01L21/329
Abstract: 本发明公开了一种p‑NiO或p‑LiNiO/n‑GaN异质结共振隧穿二极管,其结构包括:一衬底层;一生长于衬底层上的GaN层;一生长于GaN层上的n‑GaN层;一生长于n‑GaN层上的n+GaN层;一生长于n+GaN层上的n++GaN层;一生长于n++GaN层上的p++NiO层或者p++LiNiO层;一生长于p++NiO层上的p+NiO层;或者生长于p++Li NiO层上的p+LiNiO层;P型电极,设置在p+LiNiO层上;N型电极,设置在GaN层上。本发明器件结构中n++GaN与P++NiO的重掺杂使得pn异质结界面处的能带产生弯曲,使得零偏下p‑NiO的价带高于n‑GaN的导带,从而通过调节偏压实现载流子的共振隧穿。
-
公开(公告)号:CN114561632A
公开(公告)日:2022-05-31
申请号:CN202210197268.3
申请日:2022-03-02
Applicant: 南京大学
IPC: C23C16/511 , C23C16/27 , C23C16/455 , C23C16/52 , C30B25/14 , C30B25/16 , C30B29/04
Abstract: 一种可实现有效掺杂的MPCVD设备,包括反应室和气体输入结构,所述气体输入结构包括两路反应气体管道,第一路管道连接的分配器将气体均匀输运道到反应室中,气体出口位于反应室顶部附近,将反应气体均匀地输运到反应室中,该气体分配器位于腔室的顶部区域;第一路管道用于传输第一反应物,第二路管道通过一圆环气体分配器将掺杂反应气体均匀地输入到衬底表面,所述第二管道输气环水平高度和衬底支托保持一致,所述输气环可放置于中心位置,和支托呈内同心结构,所述输气环也可放置于支托周围,和支托呈现外同心结构。本发明采取两个管道分别传输反应气体的方式,可有效实现MPCVD的掺杂效果。
-
公开(公告)号:CN114166803A
公开(公告)日:2022-03-11
申请号:CN202111373155.6
申请日:2021-11-19
Applicant: 南京大学
IPC: G01N21/63
Abstract: 本发明公开了金刚石氮‑空位色心阵列传感器,涉及一种金刚石半导体传感器,包括传感器、金刚石衬底、金刚石外延层、NV色心层、纳米柱阵列结构和纳米柱阵列天线,所述传感器底端具有金刚石衬底,在所述金刚石衬底正面上有一层金刚石外延层,所述金刚石外延层是n型半导体,所述金刚石外延层表面存在采用原位MPCVD生长方式得到NV色心层,所述传感器NV色心层中NV色心的取向得到了择优取向,其中NV色心层具有10nm和50nm之间的厚度,所述金刚石外延层即传感接触层结构为纳米柱阵列结构,述传感接触层纳米柱包括金刚石纳米柱、介质层和金属层,所述介质层淀积在金刚石纳米柱表面,所述金属层淀积在介质层表面。
-
公开(公告)号:CN109056066A
公开(公告)日:2018-12-21
申请号:CN201811030854.9
申请日:2018-09-05
Applicant: 南京大学
Abstract: 一种超声辅助雾相输运化学气相沉积生长氧化镓的系统。一种超声辅助雾相输运化学气相沉积方法,采用水溶性的镓盐超声雾化源作为原料,在反应腔室中进行;利用反应腔室内有气流的收束装置部位作为生长区,反应腔室整体为卧式结构;镓源的水溶液由超声雾化器雾化之后由隋性气体(氮气)作为载气输运,与稀释气体混合后进入反应腔室,反应腔室内部具有气流收束结构,反应腔室后端输出位置时用水吸收反应产物和未反应的原料,输出位置并设有防倒吸结构;反应后的尾气由尾气处理装置处理。
-
公开(公告)号:CN105576054A
公开(公告)日:2016-05-11
申请号:CN201610169554.3
申请日:2016-03-23
Applicant: 南京大学
IPC: H01L31/04 , H01L31/0236 , B82Y30/00
CPC classification number: Y02E10/50 , H01L31/04 , B82Y30/00 , H01L31/0236
Abstract: 本发明公开了基于蝶形等离激元增强天线的纳米线中间带太阳能电池结构,二氧化硅或石英衬底上为平躺的氧掺杂碲化锌/氧化锌核壳结构纳米线,氧化锌在外层,氧掺杂碲化锌/氧化锌核壳结构的纳米线长度为1-10um,核壳结构纳米线的直径为200-400nm,氧化锌的厚度为5-40nm;核壳结构纳米线的两侧设有若干对金属铝蝶形天线,每一对金属铝蝶形天线为尖端对尖端的三棱锥结构,每一对蝶形天线中两个尖端对尖端的三棱锥相对于纳米线是可以是中心对称的,也可以是非中心对称的。主要解决中间带太阳能电池吸收层中间带态密度小而吸收效率偏低的问题,实现太阳光全光谱吸收增强而提高器件整体光电转换效率。
-
公开(公告)号:CN119230597B
公开(公告)日:2025-05-09
申请号:CN202411759891.9
申请日:2024-12-03
Applicant: 南京大学
Abstract: 本发明公开了一种具有κ‑Ga2O3/Al2O3复合铁电介质层的负电容晶体管及其制备方法。本发明的负电容晶体管包括从下至上依次设置的衬底,GaN缓冲层,UID‑GaN沟道层,Al0.25Ga0.75N势垒层,以及设置在Al0.25Ga0.75N势垒层上的源电极、漏电极和栅极,以及设置在栅极和Al0.25Ga0.75N势垒层之间的κ‑Ga2O3/Al2O3复合铁电介质层。本发明的负电容晶体管能够实现易失性与非易失性存储的结合,从而在保证高速数据处理能力的同时,提高系统的稳定性与断电后的数据保存可靠性,为全储备池的应用提供高效的数据管理支持。
-
公开(公告)号:CN119230597A
公开(公告)日:2024-12-31
申请号:CN202411759891.9
申请日:2024-12-03
Applicant: 南京大学
IPC: H01L29/51 , H01L21/336 , H01L29/78
Abstract: 本发明公开了一种具有κ‑Ga2O3/Al2O3复合铁电介质层的负电容晶体管及其制备方法。本发明的负电容晶体管包括从下至上依次设置的衬底,GaN缓冲层,UID‑GaN沟道层,Al0.25Ga0.75N势垒层,以及设置在Al0.25Ga0.75N势垒层上的源电极、漏电极和栅极,以及设置在栅极和Al0.25Ga0.75N势垒层之间的κ‑Ga2O3/Al2O3复合铁电介质层。本发明的负电容晶体管能够实现易失性与非易失性存储的结合,从而在保证高速数据处理能力的同时,提高系统的稳定性与断电后的数据保存可靠性,为全储备池的应用提供高效的数据管理支持。
-
公开(公告)号:CN117253936A
公开(公告)日:2023-12-19
申请号:CN202311542847.8
申请日:2023-11-20
Applicant: 南京大学
Abstract: 本发明涉及一种氧化镓基声表面波兼日盲紫外双模态探测器及其制备方法,所述探测器包括自下而上设置的衬底,κ‑Ga2O3压电薄膜层,金属电极层;所述金属电极层包括叉指换能器,所述叉指换能器沿宽度方向的两侧对称设置有反射栅。本发明利用κ‑Ga2O3材料的宽带隙以及压电极化特性,制备了兼具声表面波探测和日盲紫外探测双模态探测功能的探测器,所述探测器在265nm光照下可同时在声电和光导模式下工作,对日盲光波段具有较高响应,自驱动工作功耗更低,相比于其他压电材料的声表面波探测器,具有更高的谐振频率和灵敏度。
-
公开(公告)号:CN116626920B
公开(公告)日:2023-11-03
申请号:CN202310899405.2
申请日:2023-07-21
Applicant: 南京大学
Abstract: 本发明涉及偏振调制器技术领域,具体涉及一种与发光二极管集成的超表面偏振调制器。底部集成有发光二极管外延片,偏振调制器由超表面结构组成,超表面结构由单元晶胞周期性排列而成,单元晶胞包括第一金属微纳结构层、第二金属微纳结构层和电介质隔离层,每个单元晶胞的第一金属微纳结构层均包括沿单元晶胞长度方向排列的一段或多段第一矩形金属块,第二金属微纳结构层均包括沿特定方向排列的多段第二矩形金属块,第一矩形金属块与沿特定方向排列的第二矩形金属块之间具有相对夹角。其具有较好的透过率和消光比,且具有更高的偏振转换度和较低的能量损耗。
-
-
-
-
-
-
-
-
-