-
公开(公告)号:CN118151673A
公开(公告)日:2024-06-07
申请号:CN202410256307.1
申请日:2024-03-06
Applicant: 北京理工大学 , 中国北方工业有限公司
IPC: G05D1/49
Abstract: 本发明公开了一种基于全驱理论的旋转滑翔制导飞行器姿态驾驶仪设计方法,包括以下步骤:建立双通道耦合旋转滑翔制导飞行器的姿态模型;设置第一扰动观测器,对角度跟踪误差进行估计;基于第一扰动观测器估计,在角度控制回路中根据参考角度命令获得虚拟角速率指令;设置第二扰动观测器,对虚拟控制律跟踪误差进行估计;基于第二扰动观测器估计,在角速率控制回路中,根据虚拟角速率指令获得鸭舵指令,采用鸭舵指令对旋转滑翔制导飞行器进行姿态控制。本发明公开的基于全驱理论的旋转滑翔制导飞行器姿态驾驶仪设计方法,可以在复杂条件下使飞行器保持理想姿态,稳定飞行。
-
公开(公告)号:CN117826858A
公开(公告)日:2024-04-05
申请号:CN202410005908.5
申请日:2024-01-02
Applicant: 北京理工大学
IPC: G05D1/495 , G05D1/46 , G05D101/10 , G05D109/20
Abstract: 本发明公开了一种应用于无人飞行器的容错控制方法,实现了在有外界环境干扰和自身电机部分故障的情况下对飞行器期望姿态指令的快速准确跟踪;该方法中,基于非奇异快速终端滑模面来实时获得并输出动力系统需要输出的力矩,再基于该动力系统需要输出的力矩控制无人飞行器飞行,使得无人飞行器跟踪所述期望的姿态指令。
-
公开(公告)号:CN116700306B
公开(公告)日:2024-02-27
申请号:CN202310646328.X
申请日:2023-06-02
Applicant: 北京理工大学 , 中国兵器科学研究院 , 西北工业集团有限公司
IPC: G05D1/49 , G05D1/46 , G05D1/495 , G05D109/12 , G05D101/10 , G05D109/20
Abstract: 本发明公开了一种用于捷联导引飞行器的一体化制导控制方法,包括以下步骤:S1、设置控制系统模型,通过控制系统模型描述飞行器视线角、视线角速度、飞行器姿态、速度、飞行器控制量之间的关系;S2、根据控制系统模型,获取飞行器当前时刻的飞行器视线角、视线角速度、飞行器姿态、速度以及上一时刻飞行器控制量,获得当前控制信号,飞行器按照控制信号控制飞行器进行偏转。本发明公开的用于捷联导引飞行器的(56)对比文件张登辉.助推滑翔飞行器多约束制导控制一体化设计方法.中国博士学位论文全文数据库工程科技Ⅱ辑.2022,第72-82页.刘佳琪等.考虑驾驶仪动态性能的指令滤波反演制导律.航空学报.2020,第41卷(第12期),第3241231-32412310页.安炳合;王永骥;刘磊;侯治威;王博.基于自抗扰终端滑模的高速滑翔飞行器姿态控制.弹箭与制导学报.2019,第39卷(第06期),第164-170页.卜祥伟;吴晓燕;白瑞阳;马震.基于滑模微分器的吸气式高超声速飞行器鲁棒反演控制.固体火箭技术.2015,第38卷(第01期),第12-17页.
-
公开(公告)号:CN117331307A
公开(公告)日:2024-01-02
申请号:CN202210725164.5
申请日:2022-06-24
Applicant: 北京理工大学
IPC: G05B13/04
Abstract: 本发明公开了一种高动态飞行器滚转稳定控制方法,该方法中建立考虑气动非线性和不确定性的快时变导弹滚转通道模型,在此基础上提出了基于扰动观测器的鲁棒滚转控制方法,以实现对控制系统前馈,抵消模型气动非线性的影响;进而结合误差动力学构建非奇异快速终端滑模面,实现控制输入受限情况下的系统有限时间收敛,再进一步,在考虑执行机构的动态响应过程的条件下提出了反步控制方法,最后基于Lyapunov理论分析闭环系统的稳定性,从而给出最终的控制率,通过该控制率实时获得飞行器的需用过载,进而依据该需用过载实时控制飞行器飞向目标。
-
公开(公告)号:CN116203988A
公开(公告)日:2023-06-02
申请号:CN202310256332.5
申请日:2023-03-16
Applicant: 北京理工大学 , 西北工业集团有限公司
IPC: G05D1/10
Abstract: 本发明公开了一种基于融合微分方法的高动态飞行器制导控制方法,该方法为提升系统响应速度和连续精度,设计了包含非线性项和线性项的融合微分算法,以保证视线角速度估计过程中初始响应阶段的快速响应和后续跟踪阶段的平稳跟踪,从而及时准确地获得制导控制所需的视线角速度,再进一步基于重力补偿比例导引方式为高动态飞行器设计需用过载,需用过载按不同飞行器的传递比导出控制指令,传输给伺服机构,由伺服机构控制舵机对飞行器进行控制飞行,实现了精度更高的制导控制。
-
公开(公告)号:CN116000912A
公开(公告)日:2023-04-25
申请号:CN202210453648.9
申请日:2022-04-27
Applicant: 北京理工大学
Abstract: 本发明公开了一种用于仿生假人踝关节精确跟踪控制方法,通过二连杆结构仿生假人踝关节,包括相铰接的小腿杆和脚掌杆,在脚掌杆上,与小腿杆连接端,设置有脚掌驱动电机;在小腿杆上,远离脚掌杆连接端,设置有小腿驱动电机;通过在小腿杆和脚掌杆上分别设置传感器以测量小腿杆、脚掌杆的角位置、角速率和角加速度;根据期望角位置与测量角位置获得跟踪误差,通过滑模控制法使得跟踪误差快速收敛,实现仿生假人踝关节对期望轨迹的精确跟踪。本发明公开的用于仿生假人踝关节精确跟踪控制方法,实现快速收敛,并规避了非奇异的问题,适用于冰雪运动等高速度运动下的控制。
-
公开(公告)号:CN119292292A
公开(公告)日:2025-01-10
申请号:CN202310812104.1
申请日:2023-07-04
Applicant: 北京理工大学
IPC: G05D1/46 , G05D109/20
Abstract: 本发明公开了一种用于远程多模复合制导飞行器的制导控制方法及系统,该系统中,在末制导段使用主动雷达/红外多模复合制导策略,利用两者优势互补,增强了探测系统的信息获取能力,从探测方面保障飞行器在各种干扰因素的影响下依旧精确命中目标的能力,在中制导段对飞行器采用惯性制导并通过过重补比例导引制导律控制使其进行增程滑翔的方法,实现了飞行器的精确命中范围从20km到40km的提升,在末制导段采用新型终端滑模制导律对飞行器的末制导段进行控制,在保证精确命中的基础上,实现了落角误差由10°控制到2°以内。
-
公开(公告)号:CN116000912B
公开(公告)日:2024-12-13
申请号:CN202210453648.9
申请日:2022-04-27
Applicant: 北京理工大学
Abstract: 本发明公开了一种用于仿生假人踝关节精确跟踪控制方法,通过二连杆结构仿生假人踝关节,包括相铰接的小腿杆和脚掌杆,在脚掌杆上,与小腿杆连接端,设置有脚掌驱动电机;在小腿杆上,远离脚掌杆连接端,设置有小腿驱动电机;通过在小腿杆和脚掌杆上分别设置传感器以测量小腿杆、脚掌杆的角位置、角速率和角加速度;根据期望角位置与测量角位置获得跟踪误差,通过滑模控制法使得跟踪误差快速收敛,实现仿生假人踝关节对期望轨迹的精确跟踪。本发明公开的用于仿生假人踝关节精确跟踪控制方法,实现快速收敛,并规避了非奇异的问题,适用于冰雪运动等高速度运动下的控制。
-
公开(公告)号:CN118778661A
公开(公告)日:2024-10-15
申请号:CN202310347403.2
申请日:2023-04-03
Applicant: 北京理工大学
IPC: G05D1/46
Abstract: 本发明公开了一种时间空间协同的多飞行器抗扰动协同制导控制方法,该方法中,在视线法向上设计了分布式空间协同制导律,可在有限时间内使多飞行器的相对视线角收敛于期望值,使多飞行器从期望的视线相对方向命中目标,同时,在视线方向上设计了分布式时间协同制导律,以便于控制多个飞行器同时命中目标;在此基础上,通过增加附加项的方式,使所设计的协同制导控制方法具有抗干扰的效果,实现了飞行器在扰动情况下的命中精度大幅提高。
-
公开(公告)号:CN118131617A
公开(公告)日:2024-06-04
申请号:CN202410127972.0
申请日:2024-01-30
Applicant: 北京理工大学 , 中国兵器科学研究院 , 西北工业集团有限公司
IPC: G05B13/04
Abstract: 本发明公开了一种用于大跨域飞行制导飞行器的横滚转稳定控制方法,包括以下步骤:建立飞行器滚转通道系统模型;基于飞行器滚转通道系统模型设置控制器;获取飞行器的滚转角速度,通过控制器控制飞行器滚转角速度的变化,所述控制器为基于滑模面和滑模趋近律的控制器,所述滑模面为积分滑模面,所述滑模趋近律为快速幂次趋近律。本发明公开的用于大跨域飞行制导飞行器的横滚转稳定控制方法,可以积累误差并逐步减小误差,从而实现更高的控制精度,对于系统参数变化和外部干扰具有较好的鲁棒性。
-
-
-
-
-
-
-
-
-