-
公开(公告)号:CN118012124A
公开(公告)日:2024-05-10
申请号:CN202410121184.0
申请日:2024-01-29
Applicant: 北京理工大学 , 西北工业集团有限公司
IPC: G05D1/495 , G05D1/46 , G05D101/10 , G05D109/20
Abstract: 本发明公开了一种新型空基制导飞行器落角约束制导方法,包括以下步骤:建立制导模型;建立固定时间超螺旋扩张状态观测器,对目标加速度进行估计;基于观测器的估计结果,采用反步法获得加速度指令;飞行器根据加速度指令控制飞行姿态。本发明公开的新型空基制导飞行器落角约束制导方法,能够对目标加速度进行准确估计和补偿,相比于传统的高增益扩张状态观测器,系统动态稳定性更强。
-
公开(公告)号:CN117360798A
公开(公告)日:2024-01-09
申请号:CN202210769720.9
申请日:2022-07-01
Applicant: 北京理工大学
IPC: B64G1/24
Abstract: 本发明公开了一种卫星制导突防飞行器及其上的时间约束制导控制方法,该系统中设置有卫星导航模块,其用于实时获得飞行器的位置信息、速度信息,IMU模块,其用于实时获得飞行器的姿态信息和加速度信息,计时模块,其实时记录飞行器在起飞后的飞行过程中已经经过的时间,微处理器,其用于根据接收到的信息获得制导指令;控制模块,其用于根据制导指令生成舵指令,进而控制伺服舵机偏转;其中,在所述微处理器中,基于期望飞时和飞行时间误差进行制导控制,获得需用过载,从而使得每个飞行器都能够按照预设时间命中目标。
-
公开(公告)号:CN116954247A
公开(公告)日:2023-10-27
申请号:CN202210397181.0
申请日:2022-04-15
Applicant: 北京理工大学
IPC: G05D1/10
Abstract: 本发明公开了一种考虑飞时落角约束的复合制导飞行器制导控制方法,包括以下步骤:在多个飞行器中设置制导律;设置多个飞行器的期望终端弹目视线角和期望飞行时间;针对每一个飞行器,在飞行器发射后,实时获取飞行器的条件信息,将条件信息输入到制导律中,获得该飞行器的过载指令;制导律包括落角控制子制导律和飞时控制子制导律,落角控制子制导律,用于控制飞行器按照期望落角到达目标位置,飞时控制子制导律,用于控制飞行器按照期望飞行时间到达目标位置。本发明公开的考虑飞时落角约束的复合制导飞行器制导控制方法,能够实现飞时和落角双重约束下的精确制导,使飞行器实现强抗扰高精度饱和攻击。
-
公开(公告)号:CN116880526A
公开(公告)日:2023-10-13
申请号:CN202310876141.9
申请日:2023-07-17
Applicant: 北京理工大学
Abstract: 本发明公开了一种卫星拒止条件下复合制导飞行器的制导方法,该方法中,飞行器在中制导段,基于卫星信号和姿态敏感系统获得飞行器的期望加速度,据此控制飞行器飞向目标,在此过程中,若遭遇卫星拒止,则基于上一时刻应用的卫星信号获得飞行器的期望加速度,直至重新获得实时的卫星信号,在飞行器发射预定时间后,开启激光导引头;当激光导引头捕获目标后,通过新型视线角约束制导律实时获得飞行器的期望加速度,基于飞行器的期望加速度生成舵指令,控制舵机打舵工作,控制飞行器飞向目标,并以期望视线角碰撞目标,通过该新型视线角约束制导律补偿修正由于卫星拒止导致的偏差,最终使得飞行器命中目标。
-
公开(公告)号:CN115993775A
公开(公告)日:2023-04-21
申请号:CN202210453598.4
申请日:2022-04-27
Applicant: 北京理工大学
IPC: G05B13/04
Abstract: 本发明公开了一种用于仿生假腿精确跟踪控制方法,通过二连杆结构仿生假腿,包括相铰接的大腿杆和小腿杆,在小腿杆上,与大腿杆连接端,设置有小腿驱动电机;在大腿杆上,远离小腿杆连接端,设置有大腿驱动电机;通过在大腿杆和小腿杆上分别设置传感器以测量大腿杆、小腿杆的角位置、角速率和角加速度;根据期望角位置与测量角位置获得跟踪误差,通过滑模控制法使得跟踪误差快速收敛,实现仿生假腿对期望轨迹的精确跟踪。本发明公开的用于仿生假腿精确跟踪控制方法,不仅实现快速收敛,还规避了非奇异的问题,实现了高精度、高连续性控制,适用于冰雪运动等高速度运动下的控制。
-
公开(公告)号:CN118244786A
公开(公告)日:2024-06-25
申请号:CN202410113635.6
申请日:2024-01-26
Applicant: 北京理工大学 , 中国兵器科学研究院 , 西北工业集团有限公司
IPC: G05D1/495 , G05D1/46 , G05D101/10 , G05D109/20
Abstract: 本发明公开了一种考虑执行机构动力学的旋转飞行器的横滚转稳定控制方法,包括以下步骤:基于飞行器滚转通道模型和执行机构动力学传递函数,设置执行机构动力学模型;设置控制器,控制滚转角速度;在控制器中设置滑模控制,获得控制指令,采用控制指令对旋转飞行器进行横滚转控制。本发明公开的考虑执行机构动力学的旋转飞行器的横滚转稳定控制方法,提高飞行器在大攻角非线性飞行环境下的横滚稳定性、控制精度和动态响应能力,从而确保飞行器的安全性、稳定性和性能。
-
公开(公告)号:CN117742375A
公开(公告)日:2024-03-22
申请号:CN202311691175.7
申请日:2023-12-11
Applicant: 北京理工大学 , 中国北方工业有限公司
IPC: G05D1/49 , G05D109/12
Abstract: 本发明公开了一种制导飞行器鲁棒姿态控制方法,该方法中,在飞行器控制过程中引入了定时收敛积分滑模扰动观测器,可以精确的估计和补偿干扰;采用定时收敛的非奇异终端滑模控制策略,可保证系统的定时收敛,同时自适应滑膜也可以抑制抖振;从而可以实现飞行器在复杂飞行条件下的精确姿态跟踪和稳定。
-
公开(公告)号:CN117452962A
公开(公告)日:2024-01-26
申请号:CN202311383885.3
申请日:2023-10-24
Applicant: 北京理工大学
IPC: G05D1/46 , G05D109/28
Abstract: 本发明公开了一种飞行器角度约束制导控制方法,包括以下步骤:根据飞行器与目标的相对运动方程,建立制导系统;设置定时扰动观测器,用于对目标飞行状态进行分估计和前馈补偿;在制导系统的基础上,基于定时扰动观测器获得定时滑模制导律;通过定时制导律控制飞行器的飞行姿态。本发明公开的飞行器角度约束制导控制方法,能够在没有先验信息的情况下,对目标进行估计和前馈补偿,可精确获取目标机动,提高了目标打击精度。
-
公开(公告)号:CN116991174A
公开(公告)日:2023-11-03
申请号:CN202210459046.4
申请日:2022-04-25
Applicant: 北京理工大学
IPC: G05D1/10
Abstract: 本发明公开了一种高超声速飞行器轨迹预测方法,所述方法包括以下步骤:布置检测站,通过检测站持续探测区域内是否存在目标;在发现目标后,给出初始的目标状态,并且选取采样点,开始采样,得到观测值;在每个采样点都根据初始的目标状态估计出多个虚拟目标状态;根据每个采样点的观测值对该采样点的虚拟目标状态进行重采样;根据重采样得到的虚拟目标状态确定该采样点对应的速度、位置信息;根据采样点对应的速度、位置信息,获得目标的气动加速度;获得目标的气动参数。本发明提供的高超声速飞行器轨迹预测方法,能够实现对高超声速飞行器的实时追踪,获得其精确的气动参数,以对飞行器的轨迹进行预测。
-
公开(公告)号:CN116954246A
公开(公告)日:2023-10-27
申请号:CN202210391450.2
申请日:2022-04-14
Applicant: 北京理工大学
IPC: G05D1/10
Abstract: 本发明公开了一种近程突防飞行器及其上的协同制导控制方法,该系统中设置有卫星导航模块,其用于实时获得飞行器的位置信息、速度信息,IMU模块,其用于实时获得飞行器的姿态信息和加速度信息,弹间通讯模块,其用于相邻飞行器之间进行协调变量的交互,微处理器,其用于根据接收到的信息获得制导指令;和控制模块,其用于根据制导指令生成舵指令,进而控制伺服舵机偏转,其中,在所述微处理器中,通过变增益的协同比例导引制导律进行制导控制,获得需用过载,多个飞行器上都搭载有该微处理器模块,使得多个飞行器都同时通过变增益的协同比例导引制导律进行制导控制,从而能够同时到达目标位置。
-
-
-
-
-
-
-
-
-